ELTE Particle Physics Seminar – 11 Dec 2019, Budapest Hungary

Heavy-flavour measurements with the ALICE experiment at the LHC

Róbert Vértesi

Wigner Research Centre for Physics Centre of Excellence of the Hungarian Academy of Sciences

Budapest

vertesi.robert@wigner.mta.hu

This work has been supported by the Hungarian NKFIH/OTKA K 120660 grant and the János Bolyai scholarship of the Hungarian Academy of Sciences

R. Vértesi

Heavy Flavor in ALICE

Heavy-flavour (HF) probes

Heavy quarks are produced early

$$\tau_{\rm c,b} \sim 1/2 \ m_{\rm c,b} \sim 0.1 \ {\rm fm} << \tau_{\rm QGP} \sim 5\text{--}10 \ {\rm fm}$$

- Collins, Soper, Sterman, NPB 263 (1986) 37.
- Heavy quarks are (almost) conserved

 $m >> T_{\text{QGP}} (m_{\text{c}} \sim 1.5 \text{ GeV}, m_{\text{b}} \sim 5 \text{ GeV})$

- No flavour changing
- Negligible thermal production
- \rightarrow Very little production or destruction in the sQGP Rapp, Hees, ISBN:978-981-4293-28-0

R. Vértesi

Heavy Flavor in ALICE

Heavy-flavour (HF) probes

Heavy quarks are produced early

$$\tau_{\rm c,b} \sim 1/2 \ m_{\rm c,b} \sim 0.1 \ {\rm fm} << \tau_{\rm QGP} \sim 5\text{--}10 \ {\rm fm}$$

- Collins, Soper, Sterman, NPB 263 (1986) 37.
- Heavy quarks are (almost) conserved

 $m >> T_{\rm QGP} (m_{\rm c} \sim 1.5 \text{ GeV}, m_{\rm b} \sim 5 \text{ GeV})$

- No flavour changing
- Negligible thermal production
- \rightarrow Very little production or destruction in the sQGP Rapp, Hees, ISBN:978-981-4293-28-0
- Transport through the whole system
 - Heavy quark kinematics in the sQGP
 - Access to transport properties of the system
 - ...exits the medium also at low momenta
 - Hadronization (fragmentation, coalescence)
 - Heavy vs. light? Charm vs. bottom?

R. Vértesi

Heavy Flavor in ALICE

Heavy-flavour (HF) probes

Heavy quarks are produced early

$$\tau_{\rm c,b} \sim 1/2 \ m_{\rm c,b} \sim 0.1 \ {\rm fm} << \tau_{\rm QGP} \sim 5\text{--}10 \ {\rm fm}$$

- Collins, Soper, Sterman, NPB 263 (1986) 37.
- Heavy quarks are (almost) conserved

 $m >> T_{\rm QGP} (m_{\rm c} \sim 1.5 \text{ GeV}, m_{\rm b} \sim 5 \text{ GeV})$

- No flavour changing
- Negligible thermal production
- \rightarrow Very little production or destruction in the sQGP Rapp, Hees, ISBN:978-981-4293-28-0
- Transport through the whole system
 - Heavy quark kinematics in the sQGP
 - Access to transport properties of the system
 - ...exits the medium also at low momenta
 - Hadronization (fragmentation, coalescence)
 - Heavy vs. light? Charm vs. bottom?

Penetrating probes down to low momenta!

5

Experimental access to open HF

- Heavy quarks (c,b) hadronize into mesons (D,B) or baryons (Λ_c ...)
- These hadrons later decay weakly into light mesons
- Experimental access:

identification of decay products

Experimental access to open HF

- Heavy quarks (c,b) hadronize into mesons (D,B) or baryons (Λ_c ...)
- These hadrons later decay weakly into light mesons
- Experimental access:

identification of decay products

Experimental access to open HF

- Heavy quarks (c,b) hadronize into mesons (D,B) or baryons (Λ_c ...)
- These hadrons later decay weakly into light mesons
- Experimental access:

identification of decay products

Experimental access to open HF

- Heavy quarks (c,b) hadronize into mesons (D,B) or baryons (Λ_c ...)
- These hadrons later decay weakly into light mesons
- Experimental access:

identification of decay products

finding the location of the decay (secondary vertex)

 $\begin{array}{ll} \mbox{Lifetime of heavy quarks} & c\tau(D) \sim 100\mbox{-}300\mbox{ mm} \\ c\tau(B) \sim 400\mbox{-}500\mbox{ mm} \\ \mbox{Secondary vertex resolution <100\mbox{ mm} } \end{array}$

9

ALICE

A dedicated heavy-ion experiment at the LHC, excellent PID

ALICE

A dedicated heavy-ion experiment at the LHC, excellent PID

Heavy Flavor in ALICE

11

Heavy flavour in small systems

Production cross sections in pp collisions

Primary (vacuum) pQCD benchmark

Heavy Flavor in ALICE

12

Heavy flavour in small systems

Production cross sections in pp collisions

Primary (vacuum) pQCD benchmark

HF production vs. event activity

- Interplay between hard and soft processes
- Link between initial and final state
- Role of collective effects in small collision systems with high multiplicity? MPI?

Heavy Flavor in ALICE

13

Heavy flavour in small systems

Production cross sections in pp collisions

Primary (vacuum) pQCD benchmark

HF production vs. event activity

- Interplay between hard and soft processes
- Link between initial and final state
- Role of collective effects in small collision systems with high multiplicity? MPI?

Jet and correlation observables

- Fragmentation of charm vs. light quarks
- Properties of jets with charm content
- Contribution of gluon splitting to HF yields

Heavy Flavor in ALICE

Heavy flavour in small systems

Production cross sections in pp collisions

Primary (vacuum) pQCD benchmark

HF production vs. event activity

- Interplay between hard and soft processes
- Link between initial and final state
- Role of collective effects in small collision systems with high multiplicity? MPI?

Jet and correlation observables

- Fragmentation of charm vs. light quarks
- Properties of jets with charm content
- Contribution of gluon splitting to HF yields

Mesons and baryons

Tests of fragmentation models

R. Vértesi

D (charmed) mesons in QCD vacuum

Eur.Phys.J. C79 (2019) no.5, 388

 \sqrt{s} =5.02 TeV pp: new, high-precision D⁰, D^{*+}, D⁺, D_s⁺ measurements

- D^o down to low momenta ($p_T > 0 \text{ GeV}/c$): no topological cuts, only PID
- New reference for heavy-ion systems (p-Pb and Pb-Pb)

A detailed test of pQCD models

- Data well described by models based on factorization
- Data provide strong restriction for models

HF electrons and muons

- FONLL pQCD describes beauty electrons and beauty/charm ratio
- Agreement for electrons at midrapidity and muons at 2.5<y<4

R. Vértesi

Heavy Flavor in ALICE

D-tagged and b-tagged jets

- D-jets are jets tagged with the reconstruction of D⁰-mesons at 5, 7 and 13 TeV
- b-jets tagged based on impact parameter
- POWHEG(HVQ)+PYTHIA6(Perugia11) describes both adequately
- Strongly restricts models
 => unique opportunity to study flavor-dependent jet properties
 Reference for nuclear modification

Baryon-to-meson ratio: Λ_c^+/D^0 , Ξ_c^0/D^0

- Ξ_c^{0/D^0} as well as Λ_c^+/D^0 are underestimated by models based on ee collisions: Does charm hadronization depend on collision system?
 - PYTHIA8 with string formation beyond leading colour approximation? Christiansen, Skands, JHEP 1508 (2015) 003
 - Feed-down from augmented set of charm-baryon states?
 He, Rapp, 1902.08889
 - Detailed measurement of charm baryons provide valuable input for theoretical understanding of HF fragmentation

D-h angular correlations

- Near-side peak narrowing with increasing $p_{\mathrm{T}}^{\mathrm{D}}$
- Away-side yields increase with p_T^D value
- No significant difference between D-h correlation parameters in pp and p-Pb systems

D-h in PYTHIA: prompt/non-prompt D

 Higher per-trigger yields and baseline for non-prompt D mesons

Heavy Flavor in ALICE

D-h in PYTHIA: prompt/non-prompt D

- Higher per-trigger yields and baseline for non-prompt D mesons
- Shapes: significantly different at the near side at low p_T.

Heavy Flavor in ALICE

D-h in PYTHIA: prompt/non-prompt D

- Higher per-trigger yields and baseline for non-prompt D mesons
- Shapes: significantly different at the near side at low p_T.
- A possibility to statistically separate b and c contributions E Frajna, R V, Universe 2019 5 (5) 118

Heavy Flavor in ALICE

Heavy Flavor in ALICE

D-h in PYTHIA: partonic processes

Partonic processes in PYTHIA 8

- Initial-state radiation
- Final-state radiation
- Multiple-parton interactions

Heavy Flavor in ALICE

D-h in PYTHIA: partonic processes

- Near-side yield: significant FSR contribution (at higher p_T^{trigger}).
- Away-side yield: MPI contribution
- Away-side width: increased by parton-level effects - mainly ISR
- Baseline: contributions of ISR, FSR and MPI effects to underlying event

25

Charm fragmentation

Fragmentation of D mesons

$$z_{\parallel}^{\rm ch} = \frac{\overrightarrow{p_{\rm D}} \cdot \overrightarrow{p_{\rm ch \, jet}}}{\overrightarrow{p_{\rm ch \, jet}} \cdot \overrightarrow{p_{\rm ch \, jet}}}$$

- Comparison to model POWHEG hvq CT10NLO + PYTHIA6
- Softer fragmentation in data for low $p_{\rm T}$
- Model consistent with data at higher $p_{\rm T}$

Charm fragmentation

Fragmentation of D mesons

 $z_{\parallel}^{\rm ch} = \frac{\overrightarrow{p_{\rm D}} \cdot \overrightarrow{p_{\rm ch \, jet}}}{\overrightarrow{p_{\rm ch \, jet}} \cdot \overrightarrow{p_{\rm ch \, jet}}}$

- Comparison to model POWHEG hvq CT10NLO + PYTHIA6
- Softer fragmentation in data for low $p_{\rm T}$
- Model consistent with data at higher $p_{\rm T}$

• Λ_c -tagged jets at 13 TeV - first measurement at the LHC

- Exciting prospects for high luminosity LHC run
- Comparison to models seems to favor PYTHIA with softer settings

- Radial structure of light-flavor jets $\psi(N_{ch})$
 - Significantly influenced by multiple-parton interactions

Heavy Flavor in ALICE

- Radial structure of light-flavor jets $\psi(N_{ch})$
 - Significantly influenced by multiple-parton interactions
- Multiplicity-scaled jet size measure $R_{fix}(p_T)$
 - Does not depend on any physical settings for LF (generator, tune, CR/MPI, jet algorithm etc.)

Heavy Flavor in ALICE

- Radial structure of heavy-flavor jets $\psi(N_{ch})$
 - Integral structures splitting for the three flavors (lf,c,b)
- Multiplicity-scaled jet size measure $R_{fix}(p_T)$
 - Strong dependence of the split on momentum
- Heavy flavor jet structures sensitive to fragmentation

Heavy Flavor in ALICE

- Radial structure of heavy-flavor jets $\psi(N_{ch})$
 - Integral structures splitting for the three flavors (lf,c,b)
- Multiplicity-scaled jet size measure $R_{fix}(p_T)$
 - Strong dependence of the split on momentum
- Heavy flavor jet structures sensitive to fragmentation
 Flavor-inclusive analysis underway in ALICE 13 TeV pp

Underlying event w/ identified triggers

- PYTHIA8 simulations, 7 TeV pp
- Identify a trigger: π , p, **D** or **B**
- Examine particle production in underlying event (transverse side)
 A. No MPI case
 - particle production clearly ordered by flavor of trigger

R. Vértesi

32

Underlying event w/ identified triggers

• PYTHIA8 simulations, 7 TeV pp

- Identify a trigger: π , **p**, **D** or **B**
- Examine particle production in underlying event (transverse side)
 A. No MPI case:
 - particle production clearly ordered by flavor of trigger

B. No CR case:

- flavor ordering levelled.
- Agrees with traditional assumption:
 UE does not depend on leading hard process

R. Vértesi

33

Underlying event w/ identified triggers

• PYTHIA8 simulations, 7 TeV pp

- · Identify a trigger: π , p, **D** or **B**
- Examine particle production in underlying event (transverse side)
 A. No MPI case:
 - particle production clearly ordered by flavor of trigger

B. No CR case:

- flavor ordering levelled.
- Agrees with traditional assumption: UE does not depend on leading hard process

C. Physical case (both MPI & CR)

- Flavor-dependence (re)introduced by color reconnection
- Similar effect seen in LF & strange

Ortiz, Valencia, Palomo, PRD 99 (2019), 034027

34

HF fragmentation and underlying event

Relative effect of multiple-parton interactions

- Near side: flavor-dependent radiation/fragmentation
- Transverse side: LF and HF separated sensitive to color charge effects (quark vs gluon jets)

35

HF fragmentation and underlying event

- Relative effect of multiple-parton interactions
 - Near side: flavor-dependent radiation/fragmentation
 - Transverse side: LF and HF separated sensitive to color charge effects (quark vs gluon jets)
- Color reconnection: same relative effect in jets and the UE

36

p-Pb collisions: CNM effects?

Nuclear modification

- PDF modification: (anti)shadowing, gluon saturation
- Energy loss in CNM, k_T-broadening
- Baseline for hot nuclear effects

37

p-Pb collisions: CNM effects?

Nuclear modification

- PDF modification: (anti)shadowing, gluon saturation
- Energy loss in CNM, k_T-broadening

Baseline for hot nuclear effects

- Multiplicity-dependence?
 - Any hot droplets?

Origin of collectivity in small systems?

Disentangle initial and final state effects

ELTE Particle Phyics seminar '19

R. Vértesi

HFE in p-Pb collisions

- HFE production in p-Pb collisions: No modification w.r.t. pp collisions within uncertainties
- *Q*_{pPb} consistent with unity at all centralities
 - More radial flow in PHENIX d-Au than at the LHC ?

b-tagged jets

- **b-tagged jet cross section and** R_{pPb} measured for $10 < p_T < 100 \text{ GeV}/c$
 - Tagging based on reconstructed secondary vertex
- Data is well described by POWHEG simulatons within uncertainties
- R_{pPb} consistent with unity within uncertainties in the measured p_T range

ELTE Particle Phyics seminar '19

R. Vértesi

Heavy Flavor in ALICE

Asymuthal anisotropy in p-Pb

PRL 122, 072301

- Collectivity of HFE and HFM in small systems $c,b \rightarrow e$ at mid-rapidity, $c,b \rightarrow \mu$ forward/backward
 - Values of e and μ v₂ comparable with each other within uncertainties
 - Low-p_T: comparable to charged hadrons
 - Mid-p_T: about half the charged hadron v₂
 - Tendency of smaller p-going than Pb-going v₂

Heavy ions: hot nuclear effects

Nuclear modification

$$R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle N_{\rm coll} \rangle} \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}p_{\rm T}}{\mathrm{d}N_{\rm pp}/\mathrm{d}p_{\rm T}}$$

- Collisional energy loss
- Energy loss via gluon radiation
- Dead cone effect → expected mass ordering:

 $\Delta E_{g} \geq \Delta E_{q} \geq \Delta E_{c} \geq \Delta E_{b} \rightarrow ? R_{AA}^{h} \leq R_{AA}^{D} \leq R_{AA}^{B}$

- Color charge effect (HF is mostly quarks <=> gluon contribution in LF)
- Change of fragmentation: Baryons, jets

Heavy ions: hot nuclear effects

Nuclear modification

$$R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle N_{\rm coll} \rangle} \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}p_{\rm T}}{\mathrm{d}N_{\rm pp}/\mathrm{d}p_{\rm T}}$$

- Collisional energy loss
- Energy loss via gluon radiation
- Dead cone effect → expected mass ordering:

 $\Delta E_{g} \geq \Delta E_{q} \geq \Delta E_{c} \geq \Delta E_{b} \rightarrow ? R_{AA}^{h} \leq R_{AA}^{D} \leq R_{AA}^{B}$

- Color charge effect (HF is mostly quarks <=> gluon contribution in LF)
- Change of fragmentation: Baryons, jets

Collectivity: strongly coupled medium => substantial v_n

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + 2\sum_{n=1}^{\infty} v_n \cos\left(n(\varphi - \Psi_R)\right) \right)$$
$$v_n = \left\langle \cos(n(\varphi - \Psi_R)) \right\rangle$$

- Does heavy flavour flow?
- In what stage does it pick up flow?
 - Does it thermalize with the medium?
 - Do heavy quarks coalesce with flowing light quarks?

Pb-Pb: Suppression of charm

ALI-PREL-330734

- D⁰ measurements down to $p_{T} \sim 0$
- High-p_T: Suppression pattern similar to light flavor
 - Mass ordering? Expected $\Delta E_q > \Delta E_c$ but observed $R_{AA}^h \approx R_{AA}^D$
- Low-p_T: Charm suppression is significantly weaker than light flavor
 - Coalescence of light and charm quarks?

ELTE Particle Phyics seminar '19

R. Vértesi

Heavy Flavor in ALICE

Pb-Pb: Suppression of D mesons

- D⁰ measurements down to $p_{T} \sim 0$
- High-p_T: Suppression pattern similar to light flavor
 - Mass ordering? Expected $\Delta E_q > \Delta E_c$ but observed $R_{AA}^h \approx R_{AA}^D$
- Low-p_T: Charm suppression is significantly weaker than light flavor
 - Coalescence of light and charm quarks?
 - Several models give good description, low discrimination power

Prompt and non-prompt D mesons

- Non-prompt D mesons: access to beauty suppression in Pb-Pb collisions
 - Intermediate p_{T} : non-prompt D⁰ is less suppressed than prompt D⁰

Prompt and non-prompt D mesons

- Non-prompt D mesons: access to beauty suppression in Pb-Pb collisions
 - Intermediate p_T: non-prompt D⁰ is less suppressed than prompt D⁰
- Calculations including flavour dependent energy loss describe it
 - Ratio helps cancel some of the model and data uncertainties

47

Charm and Beauty - HF electrons

- Significant (c,b) \rightarrow e suppression in Pb-Pb collisions from medium to high $p_{\rm T}$
 - Note: Results in p-Pb collisions are consistent with unity
- Separated beauty-decay electrons hint a weaker b-quark suppression

Charm and Beauty - HF electrons

- Significant (c,b) \rightarrow e suppression in Pb-Pb collisions from medium to high $p_{\rm T}$
 - Note: Results in p-Pb collisions are consistent with unity
- Separated beauty-decay electrons hint a weaker b-quark suppression
- Models describe both $(c,b) \rightarrow e$ and $b(\rightarrow c) \rightarrow e$ within uncertainties
 - Difference understood by quark mass dependent energy loss

Production of Λ_c in Pb-Pb collisions

- Charged baryon/meson ratio Λ_c/D_0
 - mid-p_T: tendency of moderate increase from pp to central Pb-Pb collisions
 - Models include recombination follow the same trend as data
- Hint of baryon to meson enhancement

Heavy Flavor in ALICE

Heavy-flavor azimuthal anisotropy

• **D mesons flow**: A significant *v*₂ of D mesons is observed at the LHC

- **D-meson** v_2 is qualitatively similar to **charged partice** v_2 at $\sqrt{s_{NN}}$ =5.02 TeV
- Heavy-flavor electrons flow: A significant v₂ observed at the LHC
 - HFE v_2 at $\sqrt{s_{NN}}=2.76$ TeV and $\sqrt{s_{NN}}=5.02$ TeV agree within uncertainties

Azimuthal anisotropy of D: and R_{AA}

• **D mesons flow**: A significant *v*₂ of D mesons is observed at the LHC

- D-meson v_2 is qualitatively similar to charged particle v_2 at $\sqrt{s_{NN}}$ =5.02 TeV
- Models in which charm picks up flow via recombination or collisional energy loss do better in reproducing R_{AA} and v₂ simultaneously

 R_{AA} and v_2 together provide strong constraints on models

Azimuthal anisotropy of HFE: c vs. b

• HFE: significant v₂ of both the charm and beauty contributions

- Several models describe HFE v₂ (charm and beauty contributions)
- Separated beauty-electron contribution to the v₂ qualitatively similar

Summary

QCD vacuum: pp collisions at $\sqrt{s}=5.02$, 7, 8 and 13 TeV

- *D-meson, HFE, HFM spectra* adequately described by pQCD models
- *HF-tagged jets:* information about fragmentation, model development
- Charmed baryons: Unexpected enhancement, recent model explanation
- *Simulation studies*: importance of differential jet and UE measurements

Summary

QCD vacuum: pp collisions at $\sqrt{s}=5.02, 7, 8$ and 13 TeV

- *D-meson, HFE, HFM spectra* adequately described by pQCD models
- *HF-tagged jets:* information about fragmentation, model development
- Charmed baryons: Unexpected enhancement, recent model explanation
- Simulation studies: importance of differential jet and UE measurements

Nuclear modification in p-Pb collisions at $\sqrt{s_{NN}}$ =5.02 TeV

- Nuclear modification by cold nuclear matter
 - R_{AA} consistent with unity at mid-rapidity for D mesons, HFE, b-jets
 - Correlations in pp and pPb are consistent
- *Collectivity*: substantial HF *v*₂ in small systems: final state effect?

55

Summary

QCD vacuum: pp collisions at $\sqrt{s}=5.02$, 7, 8 and 13 TeV

- *D-meson, HFE, HFM spectra* adequately described by pQCD models
- *HF-tagged jets:* information about fragmentation, model development
- Charmed baryons: Unexpected enhancement, recent model explanation
- Simulation studies: importance of differential jet and UE measurements

Nuclear modification in p-Pb collisions at $\sqrt{s_{NN}}$ =5.02 TeV

- Nuclear modification by cold nuclear matter
 - R_{AA} consistent with unity at mid-rapidity for D mesons, HFE, b-jets
 - Correlations in pp and pPb are consistent
- *Collectivity*: substantial HF *v*₂ in small systems: final state effect?

Medium effects in Pb-Pb collisions at $\sqrt{s_{NN}}$ =5.02 TeV

- *Energy loss:* No ordering in high- p_T suppression: $R_{AA}^{\pi} \approx R_{AA}$ Ordering at lower p_T ranges : $R_{AA}^{b \to e} > R_{AA}^{b,c \to e}$
- Collectivity and coalescence:
 - R_{AA} at low p_T hints coalescence with the flowing medium
 - Significant azimuthal anisothropy $\rightarrow v_2 \& R_{AA}$ constrain models
- Λ_c : HF Barion over meson enhancement hinted by data

Commissioning Ions

ALICE Upgrade for Run-3 and Run-4

- Up to 50 kHz Pb-Pb interaction rate
- Requested Pb-Pb luminosity: 13 nb-1 (50-100x Run2 Pb-Pb)
- Improved tracking efficiency and resolution at low pT
- Detector upgrades: ITS, TPC, MFT, FIT
- Faster, continouos readout

ELTE Particle Phyics seminar '19

R. Vértesi

57

Protons physics Commissioning Ions

ALICE Upgrade for Run-3 and Run-4

- Up to 50 kHz Pb-Pb interaction rate
- Requested Pb-Pb luminosity: 13 nb-1 (50-100x Run2 Pb-Pb)
- Improved tracking efficiency and resolution at low pT
- Detector upgrades: ITS, TPC, MFT, FIT
- Faster, continouos readout

ELTE Particle Physics Seminar – 11 Dec 2019, Budapest Hungary

Thank you!

Physics reach after LS2 (2019-20)

	Current, $0.1 \mathrm{nb}^{-1}$		Upgrade, $10 \mathrm{nb}^{-1}$	
Observable	$p_{\mathrm{T}}^{\mathrm{min}}$	statistical	$p_{\mathrm{T}}^{\mathrm{min}}$	statistical
	$({ m GeV}/c)$	uncertainty	$({ m GeV}/c)$	uncertainty
Heavy Flavour				
D meson R_{AA}	1	10%	0	0.3%
$D_s meson R_{AA}$	4	15%	< 2	3%
D meson from B R_{AA}	3	30%	2	1%
${ m J}/\psi$ from B $R_{ m AA}$	1.5	15% (p _T -int.)	1	5%
B^+ yield	not accessible		3	10%
$\Lambda_{ m c} R_{ m AA}$	not accessible		2	15%
$\Lambda_{\rm c}/{ m D}^0$ ratio	not accessible		2	15%
$\Lambda_{\rm b}$ yield	not accessible		7	20%
D meson $v_2 (v_2 = 0.2)$	1	10%	0	0.2%
$D_{s} \text{ meson } v_2 \ (v_2 = 0.2)$	not accessible		< 2	8%
D from B v_2 ($v_2 = 0.05$)	not accessible		2	8%
J/ψ from B $v_2 \ (v_2 = 0.05)$	not accessible		1	60%
$\Lambda_{\rm c} \ v_2 \ (v_2 = 0.15)$	not a	accessible	3	20%
Dielectrons				
Temperature (intermediate mass)	not accessible			10%
Elliptic flow $(v_2 = 0.1)$ [4]	not accessible			10%
Low-mass spectral function [4]	not accessible		0.3	20%
Hypernuclei				
$^{3}_{\Lambda}$ H yield	2	18%	2	1.7%

ALICE ITS upgrade TDR

ELTE Particle Phyics seminar '19

R. Vértesi

60

ITS performance

- Semiconducting technology
- Resolves secondary vertex

heavy quark lifetimes: ct(D) $\sim 100\text{-}300~\text{mm}$ ct(B) $\sim 400\text{-}500~\text{mm}$ Secondary vertex resolution: $\sim 100~\text{mm}$

Distribution of electron track DCA (distance of closest approach to primary vertex).

MC template fitting allows for statistical separation of charm and beauty contributions.

61

$p_{\rm T}$ spectrum of D mesons

Recent high-precision measurements in pp at $\sqrt{s}=7$ GeV: **Reference for heavier systems** (p-Pb and Pb-Pb)

 D⁰ at very low p_T (<1 GeV/c): PID only, no vertex reconstruction or topological cuts

D mesons at different energies (pp)

- D-meson production cross section
- Down to $p_T = 0$ for D⁰ at 7 TeV
- pQCD calculations describe the data within uncertainties
- data uncertainties much lower than theoretical one

Heavy Flavor in ALICE

63

b-jet tagging performance

Heavy Flavor in ALICE

CNM effects in p-Pb collisions?

- D-meson production in p-Pb collisions: No modification w.r.t. pp collisions within uncertainties
 - No indication of CNM effects from intermediate to high p_T
 - Data described by several models containing CNM effects
- Hint of Q_{CP} > 1 for central collisions (1.5σ at 3<pT< 8 GeV/c)
 - similar to light hadrons
 - Radial flow? Initial or final-state effect?

Hot effects in p-Pb collisions?

- D-meson production in p-Pb collisions: No modification w.r.t. pp collisions within uncertainties
 - No indication of CNM effects from intermediate to high p_{T}
 - Data described by several models containing CNM effects
- A model including small-volume QGP formation also describes data (but not favored by)

66

CNM effects - Forward, backward

- Heavy-flavour decay muons probe the nPDFs at different x values
- Forward production is consistent with no nuclear modification
- Hint of an enhancement of HF muons at backward rapidity at low p_T
- Measurements described by models within uncertainties

Flavour/mass dependence - hadrons

D-meson suppression at high p_T consistent with pions

Understanding: different fragmentation, p_T -spectrum shape, color charge effects level out expected ordering

• **B** \rightarrow **J**/ ψ suppression at high p_T is weaker (note the |y| range)

Model understanding: different parton masses cause different energy loss in similar kinematic range

Coalescence of strange and charm

- Strangeness enhancement expected to show up in coalescence
- Hint of a weaker D_S suppression than for non-strange D mesons
 - No evidence of centrality-dependence
- Consistent with a strangeness-enhancement scenario with coalescence

69

D-h correlations - reconstruction

E Frajna (ALICE), https://indico.cern.ch/event/867085/contributions/3656153

Comparsion to Monte Carlo simulations (near-side)

PYTHIA6: LO generator with initial and final state parton shower, Lund string fragmentation.
PYTHIA8: also includes multiple-parton interactions and improved colour reconnection description.
HERWIG 7: NLO including heavy flavor, cluster hadronisation model, the showering ordering is different from PYTHIA

(angular ordering with respect to p_T ordering).

POWHEG+PYTHIA: NLO calculation of hard processes, followed by Lund fragmentation.

POWHEG LO+PYTHIA: hard process stopped at the LO level, Lund fragmentation.

EPOS3: 3D+1 viscous hydrodynamical evolution starting from flux tube initial conditions, which are generated in the Gribov-Regge multiple scattering framework.

Near-side and away-side: sensitivity to fragmentation and parton shower

Best description by POWHEG+PYTHIA6, POWHEG LO +PYTHIA6 and PYTHIA8 & Yields typically underestimated by HERWIG & NLO models predict slightly broader peaks & EPOS3 typically overpredicts the yields

arXiv:1910.14403

E Frajna (ALICE), https://indico.cern.ch/event/867085/contributions/3656153

71

Comparsion to Monte Carlo simulations (away-side)

PYTHIA6: LO generator with initial and final state parton shower, Lund string fragmentation.
PYTHIA8: also includes multiple-parton interactions and improved colour reconnection description.
HERWIG 7: NLO including heavy flavor, cluster hadronisation model, the showering ordering is different from PYTHIA (angular ordering with respect to p_T ordering).
POWHEG+PYTHIA: NLO calculation of hard processes, followed by Lund fragmentation.
POWHEG LO+PYTHIA: hard process stopped at the LO level, Lund fragmentation.
EPOS3: 3D+1 viscous hydrodynamical evolution starting from

EPOS3: 3D+1 viscous hydrodynamical evolution starting from flux tube initial conditions, which are generated in the Gribov-Regge multiple scattering framework.

Near-side and away-side: sensitivity to fragmentation and parton shower

- Best description by POWHEG+PYTHIA6, POWHEG LO + PYTHIA6 and PYTHIA8 & Yields typically underestimated by HERWIG & NLO models predict slightly broader peaks & EPOS3 typically overpredicts
- **PERMINE** (Perugia11) overpredicts both the yields and widths & PYTHIA8 (4C) overpredicts low- $p_{\rm T}$ yields and widths

E Frajna (ALICE), https://indico.cern.ch/event/867085/contributions/3656153

72

Comparsion to Monte Carlo simulations (baseline)

PYTHIA6: LO generator with initial and final state parton

shower, Lund string fragmentation.

PYTHIA8: also includes multiple-parton interactions and improved colour reconnection description.

HERWIG 7: NLO including heavy flavor, cluster hadronisation model, the showering ordering is different from PYTHIA (angular ordering with respect to p. ordering)

(angular ordering with respect to p_T ordering).

POWHEG+PYTHIA: NLO calculation of hard processes, followed by Lund fragmentation.

POWHEG LO+PYTHIA: hard process stopped at the LO level, Lund fragmentation.

EPOS3: 3D+1 viscous hydrodynamical evolution starting from flux tube initial conditions, which are generated in the Gribov-Regge multiple scattering framework.

Near-side and away-side: sensitivity to fragmentation and parton shower

- Best description by POWHEG+PYTHIA6, POWHEG LO + PYTHIA6 and PYTHIA8 & Yields typically underestimated by HERWIG & NLO models predict slightly broader peaks & EPOS3 typically overpredicts the yields
- PYTHIA6 (Perugia11) overpredicts both the yields and widths & PYTHIA8 (4C) overpredicts low- $p_{\rm T}$ yields and

Baseline: Sensitive to the underlying event

- $p_{\mathrm{T}^{\mathrm{assoc}} < 1}$ GeV: best description by PYTHIA
- $p_{\mathrm{T}}^{\mathrm{assoc}>1}$ GeV: best description by HERWIG
- POWHEG NLO and LO are the same in all ranges (not trivial since influence expected from NLO charm contributions)

CORRELATIONS USING PYTHIA 8 - different tunes

- Near side peaks are similarly predicted
- Significantly lower baseline for MonashStar (~20% at max)
- Different underlying events

Different colour reconnection modes

- Mode o : The MPI-based original Pythia 8 scheme.
- Mode 1 : The new QCD based scheme.
- Mode 2 : The new gluon-move model.
- Reconnection off.

A tendency for a narrowing of the near-side and away-side peak with increasing p_{T}^{D} .

An increasing trend of the near-side and away-side yield with increasing $p_{\rm T}^{\rm D}$.

Baseline: Other parameters than CR off are mostly the same => difference only in underlying event.

HF fragmentation: Lund vs. Peterson model

Peterson formula is a fragmentation function for heavy quarks. We use this instead of the Lund formula. For fits to experimental data, better agreement can be obtained.

$$f(z) = \frac{1}{z(1 - \frac{1}{z} - \frac{\epsilon}{1 - z})^2}$$

Hint of different trends, but no significant difference between the two models.

No c-quark mass

Disable the charm quark mass in order to sort the mass cone effect and the color charge effect.

Slight differences at near-side width and yield.

Baseline: Slight difference in underlying event at low $p_{\rm T}$.

E Frajna (ALICE), https://indico.cern.ch/event/867085/contributions/3656153

R. Vértesi

Heavy Flavor in ALICE

D-meson yields vs. multiplicity (pp)

- Production vs. multiplicity of D mesons and muons steeper than linear
- Same trend for **non-prompt** $(B \rightarrow)J/\Psi$ as well as **prompt** J/Ψ yields
 - \rightarrow No strong flavour dependence
 - \rightarrow Enhancement is likely to be related to $c\overline{c}$, $b\overline{b}$ production processes, is not strongly influenced by hadronisation

R. Vértesi

Yields vs. multiplicity in p-Pb: models

- Multiplicity at mid-rapidity: similar enhancement in p-Pb and pp collisions
- Multiplicity at backward rapidity: linear-like, less rapid increase in p-Pb coll.
- EPOS with hydro evolution: qualitatively good description in both cases