52nd International Symposium on Multiparticle Dynamics August 21-26 2023, Gyöngyös, Hungary

The role of the underlying event in the heavy-flavor baryon enhancement

Róbert Vértesi and Zoltán Varga

vertesi.robert@wigner.hu

This work has been supported by the Hungarian NKFIH OTKA FK131979 and K135515 as well as the 2021-4.1.2-NEMZ_KI-2022-0000 grants

varga.zoltan@wigner.hu

Hot QGP or cold QCD?

Does QGP come into being in small systems?

- Is energy density high enough?
- Can hot matter thermalize?
- Current understanding:
 - Collective behavior does not require QGP
 - Can be produced by vacuum-QCD effects at the soft-hard boundary
 - Multi-parton interactions (MPI) e.g. Schlichting, arXiv:1601.01177
 - Color-reconnection

 (part of some MPI models)
 e.g. Ortiz-Bencédi-Bello, J.Phys.G 44 (2017)
 - Minijets (semi-hard partons produced by incoming partons or bremsstrahlung) e.g. Eskola, Nucl.Part.Phys. 22, 4, 185 (1998)

R. Vértesi - Underlying event in HF baryon enhancement

Azimuthal correlation strength

Heavy flavor: production and fragmentation

- Parton distribution functions (PDF)
- Hard scattering process
- Fragmentation
- Factorization hypothesis: these 3 are independent!

$$\sigma_{hh \to H} = f_a(x_1, Q^2) \otimes f_b(x_2, Q^2) \otimes \sigma_{ab \to q\overline{q}} \otimes D_{q \to H}(z_q, Q^2)$$

$$Feynman.x:$$

$$x_i = p^A_{\parallel} / p^A_{\parallel,max}$$

$$Q : momentum transfer$$

Heavy flavor: production and fragmentation

- Production of heavy-flavor hadrons:
 - Parton distribution functions (PDF)
 - Hard scattering process
 - Fragmentation
- Factorization hypothesis: these 3 are independent!

$$\sigma_{hh \to H} = f_a(x_1, Q^2) \otimes f_b(x_2, Q^2) \otimes \sigma_{ab \to q\bar{q}} \otimes D_{q \to H}(z_q, Q^2)$$

 Fragmentation functions are traditionally treated as universal (same across all colliding systems)

Feynman-x: $x_i = p^A / p^A$

: momentum transfer

Charm baryon enhancement

- Charm baryon to meson ratios: sensitive probes of fragmentation
- Λ_c/D^o and Σ_c/D^o underestimated by models based on factorization approach with fragmentation functions from ee collisions: HF fragmentation universality broken!

Charm baryon enhancement

- Charm baryon to meson ratios: sensitive probes of fragmentation
- Λ_c/D^o and Σ_c/D^o underestimated by models based on factorization approach with fragmentation functions from ee collisions: HF fragmentation universality broken!
- PYTHIA 8 CR-BLC: string formation beyond leading color approximation Christiansen-Skands, HEP 08 (2015) 003
- SH model + RQM: feed-down from augmented set of charm-baryon states He-Rapp, Phys. Lett. B 795 (2019) 117
- Catania: fragmentation + coalescence of charm and light quarks Plumari et al., Eur. Phys. J. C 78 no. 4, (2018) 348
- QCM: coalescence model based on statistical weights + equal quark-velocity Song-Shao, Eur. Phys. J. C 78 no. 4, (2018) 344

ISMD 2023

Charm baryon enhancement vs. multiplicity

- The enhancement in Λ_c/D^0 depends on the final state multiplicity at mid- and forward rapidity
- Goal: Understand the origin of the enhancement with detailed event activity studies
- Is the enhancement related to the underlying event or jet fragmentation?
 → Test sensitivity using predictions with PYTHIA 8 with the CR-BLC model

Charged-hadron multiplicity N_{ch} : $|\eta| < 1$ N_{fw} : $2 < |\eta| < 5$

- Number of final-state charged hadrons
- Global parameter, does not take leading process into account

Charged-hadron multiplicity N_{ch} : $|\eta| < 1$ N_{fw} : $2 < |\eta| < 5$

- Number of final-state charged hadrons
- Global parameter, does not take leading process into account

Relative transverse multiplicity

- Represents the underlying-event
- High-p_⊤trigger hadron => Statistics can be a problem
- Dependence on fragmentation

Charged-hadron multiplicity N_{ch} : $|\eta| < 1$ N_{fw} : $2 < |\eta| < 5$

- Number of final-state charged hadrons
- Global parameter, does not take leading process into account

Toward $R_{\rm T} = \frac{N_{\rm trans}}{\langle N_{\rm trans} \rangle}$ 60°<|Δφ|<120 Transvers Δφ|>120 Away

Relative transverse multiplicity

- Represents the underlying-event
- High- p_{τ} trigger hadron => Statistics can be a problem
- Dependence on fragmentation

Transverse spherocity

- Isotropic vs. jetty events
- No need for trigger
- Only mid-rapidity

letty (S_0 \rightarrow 0) (sotropic ($A_0 \rightarrow 1$) $S_0 = \frac{\pi^2}{4} \left(\frac{\Sigma_i |\vec{p_{T_i}} \times \vec{n}|}{\Sigma_i \vec{p_{T_i}}} \right)^2 \leftarrow$

•.

Charged-hadron multiplicity N_{ch} : $|\eta| < 1$ N_{fw} : $2 < |\eta| < 5$

- Number of final-state charged hadrons
- Global parameter, does not take leading process into account

Transverse spherocity

- Isotropic vs. jetty events
- No need for trigger
- Only mid-rapidity

•

letty $(S_0 \rightarrow 0)$

Solution to the second state of the second

Relative transverse multiplicity

- Represents the underlying-event
- High-p_⊤trigger hadron => Statistics can be a problem
- Dependence on fragmentation

ISMD 2023

R. Vértesi - Underlying event in HF baryon enhancement

Λ_c/D^0 ratios vs. central and forward multiplicity

- Simulation results predicted trends observed in ALICE experimental data
- For N_{fw}: a rapidity gap reduces correlation between leading hard processes and multiplicity
 => Hint that multiplicity dependence is not driven by charm production in jets

Λ_c/D^0 ratios vs. UE and jet activity (triggered)

- Events require p_{τ} >5 GeV/c hadron trigger
- Significant difference is observable in case of R_{T} (UE activity)
- No significant difference when classified by R_{NC} classes (jet activity)

Λ_c/D^0 ratios vs. spherocity (minimum bias)

- Spherocity provides a measure for the jettines/isotropy of events
- **Significant difference** is observed **for different spherocity classes** at fixed event-multiplicity.

Λ_c/D^0 ratios - summary

J. Phys. G 49 (2022) 075005

 R_T , R_{NC} ; $p_T^{trigger} > 5 \text{ GeV/c}$

- Hard process required
- Strong dependence of ratios on the UE activity
- No pronounced dependence on the jet multiplicity.
- Trigger biases sample and decreases statistics

S₀: Jettiness in minimum-bias events

- No need to use a trigger
- At high final-state multiplicity: ratio depends on jettiness
- Low final-state multiplicity: dependence is minute

Λ_c/D^0 yield for different flattenicity classes

- Flatenicity strongly bound to the underlying event (correlates with N_{MPI})
- The Λ_c/D^0 ratio decreases with increasing flatenicity
- Might be a better quantity to address charmed-baryon enhancement

Σ_c vs. Λ_c : Isospin of charmed baryons

$$\Sigma_c$$
 (qqc, I=0) vs. Λ_c (qqc, I=1)

- Different trends in $\Lambda_c and \Sigma_c$
- Trends depend on MPI in the model class
- Charmed baryon ratios: sensitive event-shape dependent observables

Ξ_{c} and Ω_{c} : Strangeness in charmed baryons

- low p_T enhancement by charm <=> high p_T enhancement more by strangeness
- Strangeness content: no further sensitivity to the event-property descriptors
- Charm baryon enhancement driven by a different mechanism than strange baryon enhancement

Summary

- Enhancement of Λ_c/D⁰ in pp collisions compared to e⁺e⁻ collisions questions the universality of charm fragmentation
- We propose event-activity classifiers which provide great sensitivity to the production mechanisms
 - \rightarrow directly accesible experimental observables in LHC Run 3
- In a model class with color reconnection beyond leading approximation, the Λ_c enhancement comes from the underlying event, not from the jets.
 - This is seen with R_T vs. R_{NC} (triggered events) as well as S_0 (minimum bias)
 - Flattenicity, a new quantity to represent MPI, may be even more distinctive
- The observables are sensitive to differences between mechanisms of strangeness and charm enhancement as well as baryon isospin

Thank you!

Flattenicity

A. Ortiz, G. Paic, arXiv:2204.13733

- Motivated by looking into very rare "hedgehog" events in pp collisions (reported first by UA1 and CDF collaborations).
- Flatenicity (ρ): the relative standard deviation of the p_T^{cell} distribution (event-byevent):

$$ho = \sigma_{pT}^{cell} / \langle p_T^{cell} \rangle$$

- The whole phase space is divided into 80 elementary cells (10 η bins, 8 ϕ bins).
- Charged particles within $|\eta| < 4$ and $p_{\tau} > 0.15$ GeV/c (ALICE 3 acceptance).

Event descriptor classes

class	#1	#2	#3	#4	#5
$N_{\rm ch}$	≤ 15	16-30	31-40	41-50	≥ 51
$N_{\rm fw}$	≤ 45	46-90	91–120	121 - 150	≥ 151
R_{T}	< 0.5	0.5 - 1	1 - 1.5	1.5 - 2	>2
$R_{\rm NC}$	< 0.5	0.5 - 1	1 - 1.5	1.5 - 2	>2
S_0	0 - 0.25	0.25 - 0.45	0.45 - 0.55	0.55 - 0.75	0.75 - 1
ρ	0 – 1	1 – 1.5	1.5 – 2	2–2.5	>2.5

Charmed baryon-to-meson ratios vs. N_{MPI}

- Similar trend for all baryon/meson ratios.
- For the $\Lambda_{\rm c}$ there is a significant feed-down from $\Xi_{\rm c}.$

Charmed baryon-to-baryon ratios vs. N_{MPI}

- There is a low p_{τ} enhancement connected to the charm content
- There is a high p_T enhancement connected to the strange content

Strange enhancement is different from charm enhancement

ISMD 2023

R. Vértesi - Underlying event in HF baryon enhancement

Charmed baryon-to-baryon (summary plots)

ISMD 2023

R. Vértesi - Underlying event in HF baryon enhancement

Ξ_{c} and Ω_{c} : Strangeness in charmed baryons

- There is a low p_{T} enhancement connected to the charm content
- There is a high p_T enhancement connected to the strange content (above that of the charm enhancement)

Ξ_{c} and Ω_{c} : Strangeness in charmed baryons

- Strangeness content does not induce further sensitivity to the eventproperty descriptors
- Charm baryon enhancement is driven by a different mechanism than strange baryon enhancement

Σ_c vs. Λ_c : Isospin of charmed baryons

- Different trends in direct Λ_c and $\Sigma_c {\rightarrow} \Lambda_c$
- Trends depend on MPI in the model class

Σ_c vs. Λ_c : Isospin of charmed baryons

• Σ_c (qqc, I=0) vs. Λ_c (qqc, I=1)

 Charmed baryon ratios are sensitive event-shape dependent observables

ISMD 2023