

Thermodynamical string fragmentation and **QGP-like effects in jets**

	1) HUN-REN Wigner Research Centre for Physics Budapest, Hungary	<u>Róbert Vértesi</u> ^{1,*} vertesi.robert@wigner.hu	Antonio Ortiz ^{1,2} antonio.ortiz@nucleares.unam.mx	2) Universidad Nacion Autónoma de México Mexico City, Mexico
	Motivation		Results	
	$\eta^* = 0$	 Small collision systems exhibit collectivity Is there similar collectivity in a single jet? Idea: in the jet frame (j_T,Φ*,η*) the particle shower is similar to bulk physics A. Baty et al., Phys.Rev.C 107 (2023) 6, 064908 	$\begin{array}{c c} 0.45 & \text{Monash (MPI:off)} \\ 0.4 & (p+\overline{p})/\pi^{\pm} \text{ ratio} \\ 0.35 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.45 \\ 0$	CR-BLC mode2
		CMS 138 fb ⁻¹ (pp 13 TeV)		

 CMS measured angular correlations, to deduce intra-jet azimuthal anisotropy (v_2^* , elliptic flow) CMS, Phys.Rev.Lett.133(2024)14,142301

- Substantial v₂* is seen
- For low and medium jet
- multiplicity (N^j_{ch}), the trend is well understood by models
- A high-N^j_{ch} increase is present compared to predictions

Simulations

PYTHIA 8 was used to explore further signiatures of collectivity Several models were explored

• Baryon-meson ratios as a function of j_T , different N^{j}_{ch} ranges • In the light-flavor sector, trends are similar for all models • Λ^0/K_S^0 : grouping into low- N_{ch}^j and high- N_{ch}^j curves • Λ_c^+/D^0 : if color junctions are allowed, a characteristic low-j_T enhancement is present that gets stronger with multiplicity; this is similar to p_T-dependent enhancement of charmed baryons in the bulk ALICE, Phys. Rev. C 107, 064901

■ j_T-integrated baryon-to-meson ratios as a function of N^j_{ch} for different models Thermodynamical string fragmentation presents a rising trend, contrary to Lund fragmentation results: indicates

- Monash: tuned to early LHC data, capable of succesfully describing many observables, includes Lund fragmentation
- •QCD-scheme color reconnection with default settings (CR-QCD), as well as CR-BLC mode 2 that is tuned to describe heavy-flavor baryon sector: allow for color string junctions
- Thermodynamical string fragmentation with close packing: thermodynamics-motivated alternative to Lund fragmentation

Validation on bulk data:

• Light particle yields are generally well-described by Monash • Strange baryons are better described by thermodinamical

- a relative baryon enhancement with increasing N^j_{ch}
- For Ω^{\pm} , there is a fivefold increase in Thermodynamical string fragmentation compared to other models
- Models including color junctions show a constant rising of the Λ_c^+/D^0 ratio with N^j_{ch}

Conclusions

- The N_{ch}^{j} and η^{*} distributions are only slightly or not affected by the choice of the PYTHIA 8 settings.
- The proton-to-pion and the Λ^0/K_{s^0} ratios show low-high multiplicity grouping trend for $j_T>5$ GeV/c, possibly reflecting the flavor of the jet-initiating parton.
- The Λ^0/K_S^0 and Ξ^{\pm}/K_S^0 ratios show a bump structure reminiscent of

fragmentation with CR-QCD

• Charmed hadrons are best described by the CR-BLC tune

■ Jets are reconstructed using the anti-k_T algorithm and R=0.8 • Jet multiplicities and η^* distributions are relatively uneffected by the choice of model

the radial flow-like effects observed in the p_T spectra as a function of the inclusive charged particle multiplicity

- The thermodynamical string fragmentation model shows a strong enhancement of the Ω^{\pm}/K_{s^0} compared to other models
- Λ_c^+/D^0 shows an increase at low j_T with increasing N_{ch}^j for the Lund string fragmentation model with the QCD-scheme CR models. This effect is similar to the multiplicity-dependent Λ_c^+/D^0 as a function p_T reported by ALICE.
- Thermodynamical string fragmentation predicts a continuous increase of the p/ π , Λ^0/K_{s^0} and Ξ/K_{s^0} ratios with increasing N^j_{ch}. However, the strength of the enhancement gets reduced with the increase of the s-quark content, probably because of phasespace constraints

This work was supported by the Hungarian National Research, Development and Innovation Office (NKFIH) under the contract numbers OTKA FK131979 and 2021-4.1.2-NEMZ_KI-2022-00034. Support for this work has been received from CONAHCyT under the Grant CF No. 2042; PAPIIT-UNAM under the project IG100524