Event-shape-dependent analysis of charm-anticharm correlations in simulations

Zimányi School Winter Workshop on Heavy Ion Physics, 2022.

Anikó Horváth¹² in collaboration with Eszter Frajna¹³, Róbert Vértesi¹

1. Motivations and goals

- Heavy quarks (e. g. charm) have a longer lifetime and are created in the early stages of the collision, can be used to track the strongly interacting substance in heavy ion collisions
- Smaller colliding systems provide an interesting probe (collectivity)
- Effect of the different creation processes on the correlation: FLC (flavor creation), FLX (flavor excitation), GSP (gluon splitting)
- How the different parton level processes change the correlation: MPI (multiparton interaction), ISR (initial state radiation), FSR (final state radiation)

2. Methods of analysis

- I observed 2 particle c- \overline{c} azimuthal correlations with respect to event descriptor ($N_{\rm ch}$, S_0 , ρ) cuts
- ρ flatenicity [1] : $\rho = \frac{\sigma_{p_T}^{cell}}{\langle p_T^{cell} \rangle}$ The distribution of p_T over the φ - η plane, separates isotropic and jetty events
- S_0 spherocity : $S_0 = \frac{\pi^2}{4} \left(\frac{\sum_i |\vec{p}_{T_i} \times \vec{n}|}{\sum_i \vec{p}_{T_i}} \right)^2$ Separates "pencil-like" vs. spherical events

3. Correlation observations

- Normalised with the integral of the given event descriptor range, used any $p_{\rm T}$ interval
- The ρ cut geometrically highlights the correlation peaks

📥 low N_{ch}

--- high N

any p_r

no selection

- N_{ch} charged hadron multiplicity
- Simulated proton-proton collisions with PYTHIA8 at $\sqrt{s}=13~{\rm TeV}$

4. Parton level processes

- Turned on and off the MPI, ISR and FSR
- MPI, ISR adds to the away-side peak and random correlations

• Low N_{ch} cut gives sharper away-side peak, less background means more back-to-back correlations

Sorted events by the trigger (c quark) creation processes: FLC, FLX, GSP

0.094

0.092

- Used the high p_{T} interval
- Sharp away-side peak from FLC, and
 FLX also adds to the away-side peak
- The flatenicity cut separates GSP from

- The near-side peak comes from FSR
- Flatenicity cut isolates FSR from ISR and MPI almost perfectly

random correlation (low ho)

5.Conclusion, future plans

• Flatenicity can provide a good insight into the behaviour of pp collisions, could be used to separate processes coming from final state radiation

ΔΦ

- The next step can be analysing the correlation of D mesons (for example through D^0-D^0 correlations) [2]
- ALICE3 experiment provides an opportunity to compare simulations of D meson correlations with experimental data [3]

Acknowledgement: The research was supported by NKFI-OKTA FK131979 and K135515, 019-2.1.6-NEMZ KI-2019-00011 projects, and the Wigner Internship Programme

1: Wigner Research Centre for Physics, MTA Centre of Excellence 2: Eötvös Loránd University 3: Budapest University of Technology and Economics

[1] A. Ortiz, G. Paic. A look into the "hedgehog" events in pp collisions using a new event shape – flatenicity arXiv (2022) [2] S. Acharya et al. Azimuthal correlations of prompt D mesons with charged particles in pp and p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV EPJC 80 (2020) 979 [3] Alice Collaboration, Letter of intent for ALICE 3: A next-generation heavy-ion experiment at the LHC (2022)