Event activity dependence of charm baryon production at LHC energies

Z.V., R.V., J. Phys. G: Nucl. Part. Phys. 49 (2022) 075005 (arXiv:2111.00060)

Zoltán Varga^{1,2} and Róbert Vértesi¹

1. Wigner Research Centre for Physics 2. Budapest University of Technology and Economics

Production of heavy-flavor baryons

• Heavy-flavor production is usually described with the factorization approach, where *incoming hadron PDFs*, *hard parton-parton* **<u>scattering</u>** and <u>**fragmentation**</u> are independent:

Charmed-baryon enhancement classified by spherocity and flatenicity

- $d\sigma_{AB\to C}^{hard} = \sum_{a,b} f_{a/A}(x_a, Q^2) \otimes f_{b/B}(x_b, Q^2) \otimes d\sigma_{ab\to c}^{hard}(x_a, x_b, Q^2) \otimes D_{c\to C}(z, Q^2)$ Parton Distribution Function Partonic hard scattering Fragmentation (PDF) Function (FF) cross-section
- Traditional assumption: fragmentation functions are **universal** for different collision systems.
 - **FF** often determined from e+e- (or e-p) collisions, where **PDF** plays no (or less important) role.
- Recent experimental results (ALICE, CMS, LHCb) on charmedbaryon production **do not support** this assumption! [1]

- The Λ_{c}/D^{0} enhancement depends on the MPI in the lower p_{τ} region.
- Spherocity allows decribing the enhancement in events without a leading trigger hadron.
- Flatenicity pulls apart the distributions much more than spherocity.

• Significant enhancement in the Λ_c/D^0 ratio in the low p_{τ} (2-8 GeV/c)

range compared to e^+e^- predictions [1]: **no universality!**

- PYTHIA Color-reconnection beyond leading color (CR-BLC)[2,3] describes the multiplicity dependence.
- Multiplicity dependence: connected to the event activity. Needs to be better understood!
- p_{τ} dependence may be sensitive to baryon type: trend differs for Σ_{c} although it only **differs** from Λ_c in isospin.

Classifying event based on jettyness and underlying event activity

• Events with $p_{\tau} > 5$ GeV/c trigger hadron:

- **R**_T: underlying event (UE) activity classifier
$$R_T = \frac{N_{CH}^{transverse}}{\langle N_{CH}^{transverse} \rangle} \quad \frac{\pi}{3} < |\Delta \phi| < \frac{2\pi}{3}$$

- $\mathbf{R}_{\mathbf{NC}}$: jet region activity classifier $R_{NC} = \frac{N_{CH}^{near-side cone}}{\langle N_{CH}^{near-side cone} \rangle}$ $\sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} < 0.5$

- Spherocity S_o in minimum-bias events:
 - Λ_{c}/D^{0} enhancement is more prominent in spherical (UEdominated) than jetty events
- Flatenicity p in minimumbias events:
- Λ_{c}/D^{0} enhancement

decreases with flatenicity, and **contrary to spherocity** the enhancement is sensitive to it in every N_{ch} classes

• CR-BLC model links the enhancement to the UE:

- discrimination power in data from the upcoming LHC Run3.
- Flatenicity could be a better quantity to describe the MPI and the enhancement!

Summary

- Λ_{c}/D^{0} ratios: **universality** of fragmentation functions is **broken**. Does the factorization approach work?
- **Discrimination power** of differential measurements that focus on event activity in the jet and/or the underlying event region.
- **Flatenicity** is sensitive to the $\Lambda C/D0$ enhancement regardless of the multiplicity class, therefore can be a better descriptor than spherocity.

[1] ALICE Coll., "Measurement of prompt D0, Lambda_c+, and Sigma_c{0,++}(2455) production in pp collisions at sqrt(s) = 13\$ TeV", arXiv:2106.08278 [2] Christiansen, J.R., Skands, P.Z. "String formation beyond leading colour", J. High Energ. Phys. 2015, 3 (2015) [3] T. Sjöstrand et al., "An introduction to PYTHIA 8.2", Comput. Phys. Commun. 191 (2015) 159-177, arXiv:1410.3012

 $(\Sigma_i | \overrightarrow{p}_{T_i} \times \hat{n} | \chi^2)$