Flattenicity as centrality estimator in p-Pb collisions simulated with PYTHIA/Angantyr

Gyula Bencédi¹, Antonio Ortiz², Feng Fan³ HUN-REN Wigner RCP, ²Mexico U. ICN, ³Hua-Zhong Normal U.

Motivation

Small-system collectivity: large amount of soft-QCD results but origin **not yet understood**

• High-multiplicity collisions measured at forward pseudorapidities \leftrightarrow jet bias from local multiplicity fluctuations

Flattenicity as centrality estimator

Test the sensitivity of flattenicity to the impact parameter of the collision

Centrality estimators in p-A

- **Midrapidity** multiplicity (**CL1**) [4]: the largest bias towards hard pp collisions
- Forward multiplicity (V0M): reduced autocorrelation bias w.r.t. CL1

p-A in PYTHIA/Angantyr

- Angantyr [5]: pp dynamics \rightarrow collisions of nuclei without ropes and string shoving
- Participant nucleons: (1) Glauber model + Gribov correction, (2) Color-reconnection

• Correlation between multiparton interactions (MPI) and the hardness of the collision: the larger the number of MPIs (colls. with small impact parameters), the larger the likelihood of producing a harder parton-parton scattering

Objectives

- Usage of **novel event activity classifier flattenicity** with sensitivity to MPIs [1,2]
- Proposal ofxx an alternative (less biased) **centrality estimator for p-A** collisions [3]

Charged-particle flattenicity

(d	ΔΙ	:	1	I	Ι	l	1	I	I	I	1	I	I	I

• Flattenicity: reduced bias w.r.t. VOM

(CR) only applied for individual NN coll.

Used event classifiers	Symbol	Pseudorapidity (η) coverage	φ information
Midrapidity multiplicity	CL1	$-0.3 < \eta < 0.3$	not used
Forward multiplicity	VOM	$ -3.7 < \eta_{\text{lab}} < -1.7$ and $2.8 < \eta_{\text{lab}} < 5.1$	not used
Flattenicity	$ $ 1- ρ	$ -3.7 < \eta_{\text{lab}} < -1.7 \text{ and } 2.8 < \eta_{\text{lab}} < 5.1$	used

 $\langle N_{\rm coll} \rangle$ for event activity estimators

- Average number of **binary nucleon–nucleon collisions** $N_{\rm coll} = N_{\rm part} - 1$ obtained from PYTHIA/Angantyr
- Seven centrality classes are defined:
 - lowest multimplicity class: VII, $\langle dN_{\pi}/dy \rangle \approx 3$
 - highest multiplicity class: I, $\langle dN_{\pi}/dy \rangle \approx 46$
- V0M- and CL1-based estimators:
 - weak correlation with impact parameter
 - ensitivity to N_{part} fluctuations
- High-multiplicity classes: $\langle N_{coll} \rangle(b) \approx \langle N_{coll} \rangle(1-\rho)$

- Event-by-event measurement of multiplicity of primary charged particles $(N_{ch}^{cell,i})$ in each cell *i* of a forward detector (VOM of ALICE)
- **High flattenicity:** $1 \rho \rightarrow 0$: low-multiplicity events with few MPIs ("soft" pp collisions) \Rightarrow low number of high- $p_{\rm T}$ hadrons
- Low flattenicity: $1 \rho \rightarrow 1$: high-multiplicity events (large event activity) \Rightarrow large number of

Results and discussion

- PYTHIA/Angantyr 8.312: N_{coll} -scaling of high- p_T yields not reproduced, yet we want to see how centrality estimators bias the $p_{\rm T}$ spectral shapes
- Quantify spectral shapes: $Q_{\rm pPb}(p_{\rm T}) = (dN^{\rm pPb}/dp_{\rm T})/(\langle N_{\rm coll} \rangle dN^{\rm pp}/dp_{\rm T})$
- Particle species dependent analysis for the most central (class I) p–Pb collisions (see Figure below)

 $MPIs \Rightarrow multijet topologies$

• $P(1 - \rho)$ probability distribution: divided into percentiles \rightarrow define event activity classes

• $Q_{\rm pPb}(p_{\rm T})$: strong mass dependence and bump structure at intermediate $p_{\rm T}$ when centrality event selection is based on impact parameter or flattenicity

• No bump structure observed for VOM and CL1 estimators: affected by biases towards hard physics

Take-home message

Flattenicity is a novel event activity estimator that controls the biases in high-multiplicity events

References and Acknowledgment

[1] ALICE Coll., Phys.Rev.D 111 (2025) 1, 012010, [2] Ortiz, A. et al., Phys.Rev.D 107 (2023) 7, 076012, [3] Ortiz, A. et al., J.Phys.G 51 (2024) 12, 125003, [4] ALICE Coll., Phys.Rev.C 91 (2015) 6, 064905, [5] Bierlich, C. et al., JHEP 10 (2018) 134 Supported by the grants PAPIIT-UNAM IG100524, PAPIME UNAM PE100124, Hungarian NRDIO OTKA PD143226, FK131979, 2021-4.1.2-NEMZ KI-2024-00035.

Scan Me!