Asia-Europe-Pacific School of High-Energy Physics 2022

NLO Calculations of D-D Azimuthal Correlations with HERWIG

Eszter Frajna^{1,2}, Róbert Vértesi¹

Physics motivation and goals

- Heavy-flavour quarks are produced in the initial hard scattering processes. In pp collisions heavy flavours are used for: testing perturbative QCD models; studying the fragmentation processes and the multiplicity dependent production.
- Azimuthal correlations of D-D pairs provide a **direct access to charm** production mechanisms in pp collisions [1].
- Heavy flavour generation can be separated into three processes: a) pair creation (FLC), b) flavour excitation

Event activity classifiers

Charged hadron multiplicity at midrapidity ($|\eta| < 1$): number of final state charged particles.

- Forward multiplicity at forward rapidity $(2 < \eta < 5).$
- **R**_T: underlying event activity, N_{CH} transverse / < N_{CH} transverse > .
- **Spherocity**: how spherical or jet-like the event is: $S_0 \rightarrow 0$: jet-like, $S_0 \rightarrow 1$: isotropic.
- **Flatenicity**: the relative standard

(FEX), c) gluon splitting (GSP).

deviation of the p_T^{cell} distribution [2].

Leading-particle

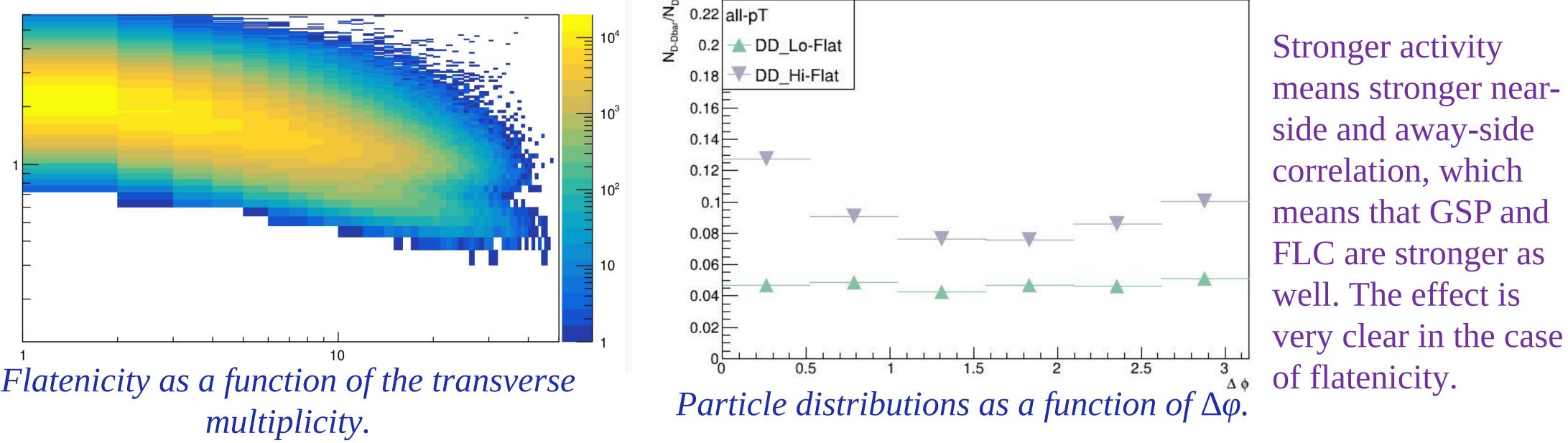
Toward

 $|\Delta \varphi| < 60^{\circ}$

Away

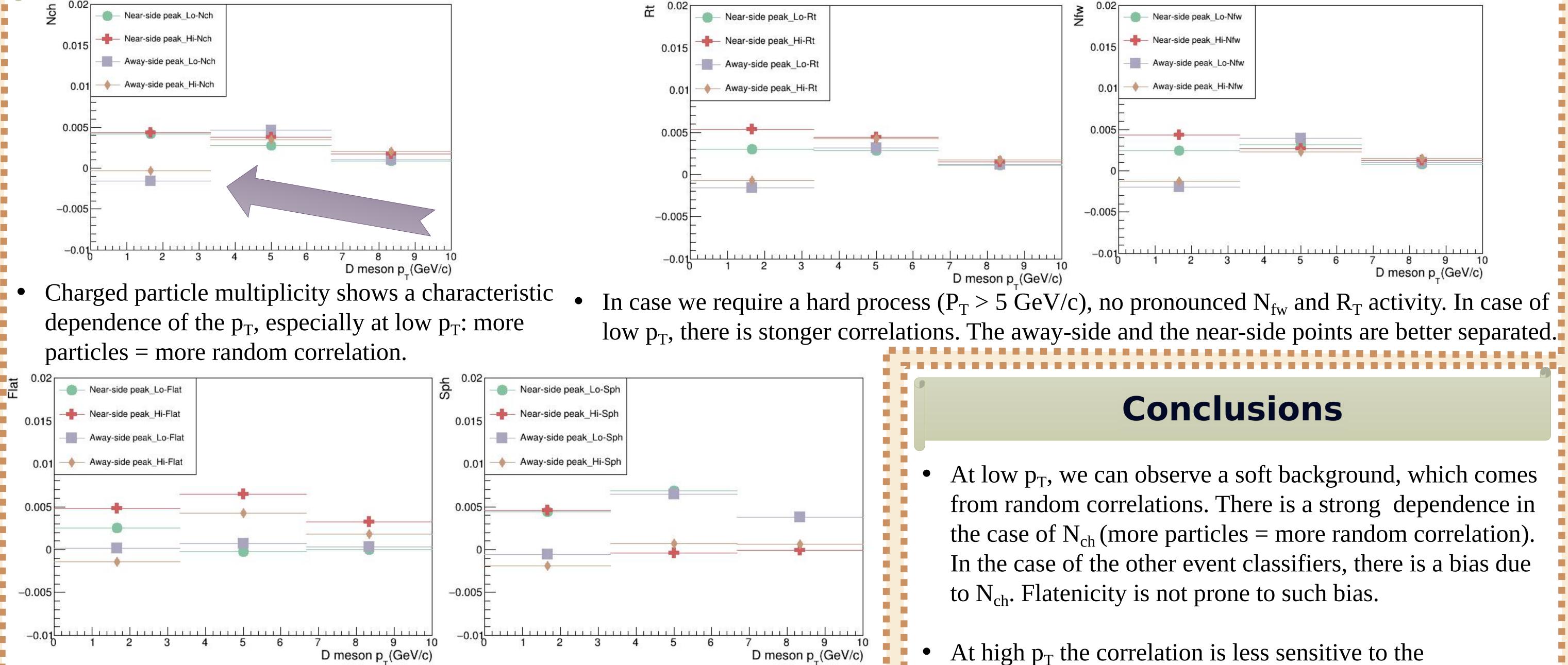
 $|\Delta \varphi| > 120^{\circ}$

Transverse


 $60^\circ < |\Delta arphi| < 120^\circ$

Transverse

 $60^\circ < |\Delta \varphi| < 120^\circ$


Analysis method

- 25 million MB event simulations from **HERWIG**. NLO calculations including heavy flavour, cluster hadronisation model, the showering ordering is different from PYTHIA (angular ordering with respect to p_T ordering).
- Due to statistical limitations, we estimated the baseline as the mean of the middle two points of particle distributions as a function of $\Delta \varphi$. The nearside and away-side peaks are represented by the mean of the points on the two sides respectively minus the baseline.

- The event activity classifiers were divided into two regions: low $(p_T^{trigger} < 2.5)$ and high $(p_T^{trigger} > 2.5)$ regions and we left a gap between the two region to separate the classifiers even more.
 - The classifiers are shown in three p_T region: p_T<2.5 GeV/c, 2.5<p_T<5 GeV/c, p_T >5GeV/c.

D meson azimuthal correlations vs. event activity classifiers

Low flatenicity shows less dependence on the p_T than spherocity, the distribution is \overline{a} more isotropic. This show that flatenicity can be a great quantity to represent highmultiplicity pp collisions vs. low-multiplicity pp collisions.

background. In the case of flatenicity and spherocity, stronger activity is associated with stronger near-side and away-side correlation.

Acknowledgement: This work has been supported by the Hungarian OTKA FK 131979 grant and the Wigner distinguished research group program.

References:

¹ Wigner Research Centre for Physics, MTA Centre of Excellence ² Budapest University of Technology and Economics

[1] S. Acharya *et al.* EPJC 80 (2020) 979. [2] A. Ortiz, G. Paic [arXiv: 2204.13733 [hep-ph]].