CERN lpGBT – Merging Timing, Data, and Control of Detectors

Tivadar KISS @ Wigner Research Centre for Physics, HUN-REN

Erno DAVID @ Wigner Research Centre for Physics, HUN-REN

14 March 2024

V4-HEP, Budapest, Hungary

Acquiring and storing of measurement data for later, offline analysis

"Big Physics" → "Big Data"

T. Kiss

Data Concentrators Needed!

Example: CERN NA61 DAQ architecture

This simple, 1 server scheme is not possible wigth larger systems!

Legacy TTS System: CERN TTC

6NCL

A Large System with Sync

ALICE

• By that time, the development of optoelectronics allowed to transmit the high-speed serial bit stream **optically**...

Duplex multimode optical cable with LC connector

Transmitting 1 ~ 10 Gb/s bidirectionally

The optical fiber cable in the foreground has the equivalent capacity of the copper cable in the background.

GBT/lpGBT Overview

The arcitecture of a typical HEP link based on a *single* bidirectional optical link

This scheme is implemented by the CERN GBT link and its successor: the IpGBT

- Back-end implmentation: Commercial components + IpGBT soft IP (Optical transceivers, FPGA, IpGBT-FPGA FW code)
- □ Fron-end implementation: Rad-hard IpGBT ASIC and Versatile Link Plus (VL+) optical components (IpGBT ASIC, IpGBT/VL+ Laser Driver, and PIN Receiver, rad-hard optical cables and connectors)

Radiaton hardness:

- Developed to whitstand HL-LHC radiation levels
- Radiation qualified commercial 65 nm CMOS technology and special layout techniques
- Robust line coding and error correction scheme (FEC5 or FEC12), capable of correcting single bit and bursts
 errors caused by SEUs and transmission errors

Downlink: deterministic latency

• clock and data (incl. trigger bits) can be delivered synchronously to all e-ports of the IpGBT ASIC on the FECs

Highly configurable features

- Can be a bidirectional transceiver, a simplex transmitter or a simplex receiver;
- Several front-end interface modes and options;
- Extensive features for precise timing control (a.k.a. "fast control");
- Several features for experiment control and monitoring (a.k.a "slow control");
- Robust operation against SEUs

This scheme is provided by the CERN GBT link and its successor: the IpGBT

IpGBT Coming in ALICE...

- During the LS2 upgrade a brand new DAQ and trigger system had been developed for ALICE for Run 3 and Run 4
- The upgrading sub-detectors are now connected to the DAQ and Trigger systems with rad-hard GBT links through the CRU
- This enables the delivery of timing & control with deterministic latency and taking of data through a single fiber connection
- The GBTx ASIC is not available any more and the new IpGBT supersedes it for new developments or system additions

Main features of the present GBT links

- 4.8 Gb/s downlink
- 4.8 Gb/s uplink
- Front-end components:
 - GBTx ASIC
 - external slow-control (I2C, SPI, etc.) controller ASIC (SCA)
 - Versatile Link (VL) optical components
- Back-end components:
 - GBT-FPGA firmware code (IP) for FPGAs
 - Commercial optical transceivers

- During the coming LS3 upgrades, the new FE systems (e.g. ITS3, FoCal) will (have to) use lpGBT links to connect to the CRUs
- The IpGBT links have to be integrated into the existing CRU FW while keeping the compatibility with the existing O2, TRIGGER, and DCS systems

Main features of the new IpGBT with VTRX+

- 2.56 Gb/s downlink,
- 5.12/10.24 Gb/s uplink
- Front-end components:
 - IpGBT ASIC
 - internal slow-control controllers (I2C, SPI, GPIO, ADC, etc) (and optional external SCA)
 - VL+ optical components
- Back-end components:
 - IpGBT-FPGA firmware code (IP) for FPGAs
 - Compatible commercial transceivers (Samtec FireFly recommended for new developments)

IpGBT and VTRX+ Architecture

IpGBT transceiver ASIC **IpGBT** Module e-Link 2.56 Gb/s IR VTRX+ Module optical Ref CLK transceiver data-down (optional) 5.1 data-up or LDGBLD clock 10.24 Gb/s 160 Mb/s to 1.28 Gb/s ports Module Configuration One 80 Mb/s port (e-Fuses + reg-Bank) \mathbf{v} 10[15:0] aln[7:0] aOut 12C 12C Port Ports control clocks Time scope of the IpGBT and VL+ solutions

- By now it is extended to Run 5 and Run 6. No new link type can be expected. (Silicon photonics integrated in FE ASICs will come, but not in this time frame...)
- Production is going on, and it is unclear if there will be later productions...

Cſ

Optical link speeds

Uplink:

- 10.24 Gb/s
- 5.12 Gb/s

Downlink:

• 2.56 Gb/s, 64-bit frames

E-links:

Connections to the front-end ASICs are made through sets of local eLinks.

- Depending on the data rate and transmission media, e-links can extend up to a few meters.
- E-links use the CERN Low Power Signaling (CLPS), with programmable signal amplitudes to suit different application requirements
- The e-Links are driven by a series of *e-Ports* on the lpGBT and are associated with eLink ports in the front-end modules.
- The number of active eLinks and their data rates are programmable in groups of 4 e-links

Uplink	Useful data bandwith							
Link speed	FEC5	FEC12						
5.12 Gb/s	4.48 Gb/s	3.84 Gb/s						
10.24 Gb/s	8.96 Gb/s	7.68 Gb/s						

lpGBT (Future, Run 4 and Run 5) vs. GBT (Present Run 3)

DOWNLINK			4.8 Gb/s (120 bits @ 40 MHz)							
Header, internal and external control channels, data channel, forward error correction	GBT downlink (CRU -> FEE)	GBT frames:	4b	2b 2b		80b	32b			
			Header	IC	C EC	User Data		FEC	nu	
differences:										
64-bit @ 40 MHz vs 120-bit @ 40 MHz			2.56 Gb/s (64 bits @ 40 MHz)							
 32-bit payload vs 80-bit bayload 	IpGBT downlink	k lpGBT frames:	4b	2b	2b	32b		24b		
2.56 Gb/s vs 4.8 Gb/s	(CRU -> FEE)		Header	IC	EC	User Data	F	EC		
TX parallel clock 320 MHz vs 240 MHz							1			
				4.8 Gb/s (120 bits @ 40 MHz)						
UPLINK	GBT uplink (FEE -> CRU)		4b	2b	2b	80b		32b		
Header, internal and external control channels, data channel, optional forward error correction		GBT frames:	Header	IC	EC	User Data		FEC /DATA		
differences:										
128/256-bit @ 40 MHz vs 120-bit @ 40 MHz			4			5.12 Gb/s (128 bits @ 40 MHz)				
96/112/192/224-bit payload vs 80/112-bit payload	IpGBT uplink (FEE -> CRU)	lpGBT frames:	2b	2b	2b	96/112b		5/12b		
5.12 Gb/s or 10.24 Gb/s vs 4.8 Gb/s			Header	IC	EC	User Data		FEC		
 RX parallel clock 320 MHz vs 240 MHz 										
			4			10.24 Gb/s (256 bits @ 40 MHz)			>	
	IpGBT uplink (FEE -> CRU)		2b	2b	2b	192/224b			5/12b	
		IpGBT	Header	IC	FC	User Data			FEC	

frames:

An IpGBT Back-end: ALICE Common Read-out Unit (CRU)

The Common Read-out Units (CRU) are PCIe add-on cards installed in the First Level Processor (FLP) nodes of the ALICE DAQ system. Main tasks of the CRU:

- Deliver the trigger, timing and read-out control information to the Front-End Electronics
- Deliver detector data to the O2 (FLP Servers) with and/or without processing in the CRU FPGA
- Transport detector control information between the DCS and the FEE
- Take part of the Busy / Drop / Throttle mechanism of the detectors read-out

Main Tasks of the CRU:

- Deliver the trigger, timing and read-out control information to the Front-End Electronics
- Deliver detector data to the O2 (FLP Servers) with and/or without processing in the CRU FPGA
- Transport detector control information between between the FLP Servers (DCS) and the FEE
- Take part of the Busy / Drop / Throttle mechanism of the detectors read-out

Thank you for the attention!

BACK-UP

DDL in the ALICE DAQ System

CERN pGBT: Merging Timing, Data, and Control of Detectors

CRUs in ALICE Read-out

3/14/202

21

3/14/2024

CERN pGBT: Merging Timing, Data, and Control of Detectors

²¹ Read-out