Event-activity-dependent beauty-baryon enhancement in simulations with color junctions

Lea Virág Földvári, Róbert Vértesi and Zoltán Varga

foldvari.lea.virag@wigner.hu

This work has been supported by the Hungarian NKFIH OTKA FK131979 and K135515, 2021-4.1.2-NEMZ_KI-2022-00034.

Signatures of QGP

Collective flow

- Large systems: hydrodynamic evolution of the QGP
- Small systems: also observed at LHC
- Strangeness enhancement
 - Governed by event multiplicity
 - pp trend continued in p-Pb and Pb-Pb
- Is there QGP in small collisional systems?
 - No definitive answer yet
 - Vacuum-QCD effects are at play: MPI, CR, minijets

Heavy-flavor production

 Total cross section of the process calculated by the factorization theorem:

 $\sigma_{hh \to H} = f_a(x_1, Q^2) \otimes f_b(x_2, Q^2) \otimes \sigma_{ab \to q\bar{q}} \otimes D_{q \to H}(z_q, Q^2)$

Fragmentation function (D_{qH})
 Traditionally assumed to be universal across different collisional systems
 Assumption works for D-mesons

Heavy-flavor baryon enhancement

◆FF from e⁺e⁻ collision: underestimates HF baryon production in pp collisions
◆Fragmentation is not universal!
◆Beauty shows similar trends

- Possible explanations:
 - Quark coalescence
 - Undiscovered excited charmbaryon states
 - Color reconnection beyond leading color approximation

Multiplicity-dependent ehancement

 The ALICE experiment found that the mid-p_T
 Λ_c⁺/D₀ enhancement is multiplicity dependent

Phys.Lett.B/ 829 (2022) 137065

PYTHIA models

- Monash 2013
 - Fragmentation function based on e^+e^- collisions
- Color reconnection beyond leading color approximation
 - Allows color string junctions
 - Time dilation using the boost factor derived from the final-state dipole mass
 - Causal connections among all dipoles
 - CR-QCD: default PYTHIA settings for this model
 - CR-BLC mode 2: further tuned for bulk observables [JHEP 08 (2015) 003]

https://pythia.org/download/talks/SjostrandCern16fcc.pdf

Event multiplicity

- *N*_{CH}
 |η|<1, |y|<1 *p*_T>0.15 GeV/*c*
- N_{CH} dependent enhancement
 Charm: best described by CR-BLC mode 2
- Beauty: best described by CR-QCD

Transverse event activity and near-side jet-cone activity

- *R*_T: transverse event activity
 - Represents the underlying event (UE)
 - Connected to MPI
- $R_{\rm NC}$: near-side jet-cone activity
 - Activity within the jet
- Trigger hadron is required
- The enhancement is dependent on the UE

Transverse spherocity

$$S_0 = \frac{\pi^2}{4} \left(\frac{\Sigma_i |\vec{p_{T_i}} \times \vec{n}|}{\Sigma_i \vec{p_{T_i}}} \right)^2$$

Measures if the event is jetty or isotropic
No need for trigger hadron
Only midrapidity

Flattenicity

PYTHIA 8.303 (Monash 2013), pp √s = 13 TeV, N_{moi}=1, N_{ch}=235, ρ=1.56

$$\rho = \frac{\sigma_{p_{\rm T}^{\rm cella}}}{\langle p_{\rm T}^{\rm cella} \rangle}$$

Measures if the event is "hedgehog-like" or jetty
No trigger hadron
Full rapidity range |η|<4

Summary

- The universality of fragmentation is violated
- Charmed and beauty baryons show similar enhancement trend
 - Charm is best described by CR-BLC mode 2
 - Beauty is best described by CR-QCD
- CR models: HF baryon enhancement comes from the underlying event, not the jet
- The proposed event-classifiers are sensitive to the production mechanisms
- Flattenicity
 - Strongly related to UE (MPI)
 - Free from biases caused by mid-rapidity jet production

Using these methods on Run-3 data can reveal further information on the source of the HF-baryon enhancement and help test the validity of different models

Thank you for your attention!

More PYTHIA models

- CR-BLC mode 0
 - Lacks time-dilation constraints
 - Controls CR by the invariant mass scale parameter
- CR-BLC mode 3
 - Time dilation
 - Requires only a single causal connection
- Thermodynamical string fragmentation
 - Gaussian suppression in mass and $p_{\rm T}$ is replaced by an exponential function
- Rope fragmentation with string shoving
 - Strings close in spacetime are allowed to repel each other