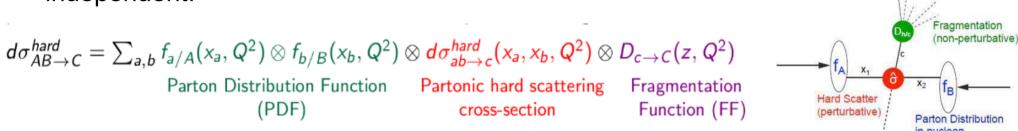
ISMD2022

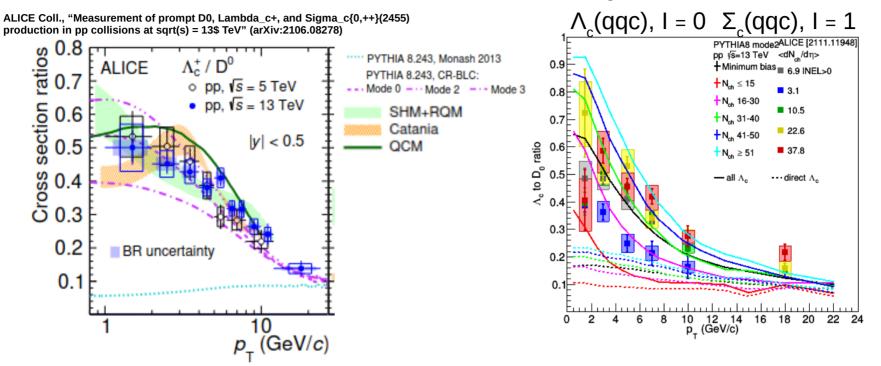
The role of the underlying event in the charm-baryon enhancement observed in pp collisions at LHC energies

Zoltán Varga^{1,2}, Róbert Vértesi¹

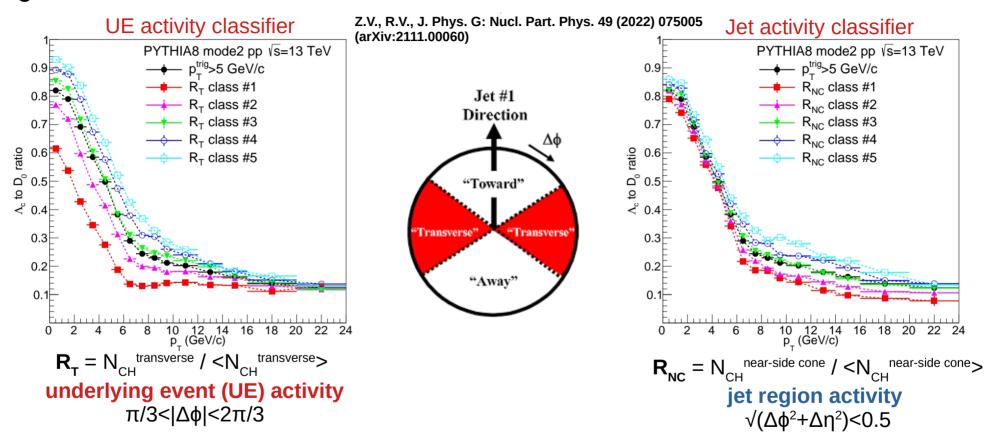
1. Wigner Research Centre for Physics


2. Budapest University of Technology and Economics

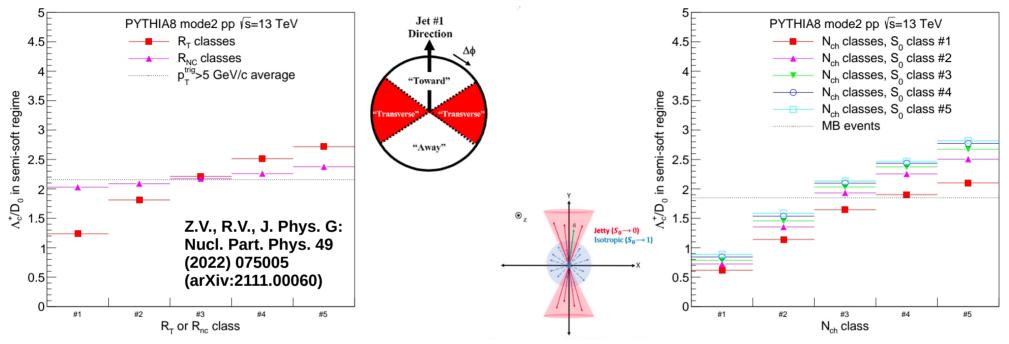
Production of heavy-flavor baryons


 Heavy-flavor production is usually described with the factorization approach: incoming <u>hadron PDFs</u>, hard <u>parton-parton scattering</u> and <u>fragmentation</u> are independent:

- Traditional assumption: fragmentation functions are **universal** for different collision systems
 - FF often determined from e-e+ (or e-p) collisions, where PDF plays no (or less important) role
- Recent experimental results (ALICE, CMS, LHCb) on charmed baryon production **do not support** this assumption!


non-perturbative

Event activity dependence of Λ_c/D^0 enhancement


- Significant enhancement in the Λ_C/D⁰ ratio in the low p_T (2-8 GeV/c) range compared to predictions from e⁺e⁻: no universality!
 Christiansen, J.R., Skands, P.Z. String formation beyond leading colour. J. High Energ. Phys. 2015, 3 (2015)
- Color-reconnection beyond leading color (CR-BLC): describes the multiplicity dependence.
- Multiplicity dependence: connected to the event activity. <u>Needs to be better understood!</u>
- p_{τ} dependence may be sensitive to baryon type: the trend differs for Σ_c although only **differs** from Λ_c in isospin.

Λ_c/D^0 enhancement in events classified by jet and UE activity

- Events require p_{τ} >5 GeV/c hadron trigger.
- Significant difference is observable in case of R_τ (UE classification).
- No significant difference when classified by R_{NC} classes (jet activity).

Λ_c/D^0 enhancement in jetty and isotropic events

Spherocity S₀ in minimum-bias events:

- Λ_c/D^0 enhancement is more prominent in spherical (UE-dominated) than jetty events

- $S_0 = \frac{\pi^2}{4} \underset{\hat{n} = (n_x, n_y, 0)}{\min} \left(\frac{\Sigma_i \mid \overrightarrow{p}_{T_i} \times \hat{n} \mid}{\Sigma_i \overrightarrow{p}_{T_i}} \right)^2$
- CR-BLC model links the enhancement to the UE:

• R_{T} vs. R_{NC} in hadron triggered events (hadron

almost independent on activity within jet

- Λ_c/D^0 enhancement depends on UE activity,

with $p_{\tau} > 5 \text{ GeV/c}$):

- discrimination power in data from the upcoming LHC Run3.

Summary

- Λ_c/D^0 ratios: universality of **fragmentation** functions is **broken**. Does the factorization approach work?
- **Discrimination power** of differential measurements that focus on event activity in the jet and/or the underlying event region.
- Measurements with different heavy-flavor baryons: more constraints on models. Explore the connection to strange-baryon enhancement.

Thank you for your attention!

Backup

Binning used for the event classifiers:

class	#1	#2	#3	#4	#5
$N_{ m ch}$	≤ 15	16 - 30	31-40	41–50	≥ 51
$N_{\rm fw}$	≤ 45	46-90	91 - 120	121 - 150	≥ 151
R_{T}	< 0.5	0.5 - 1	1 - 1.5	1.5 - 2	>2
$R_{\rm NC}$	< 0.5	0.5 - 1	1 - 1.5	1.5 - 2	>2
S_0	0 - 0.25	0.25 – 0.45	0.45 – 0.55	0.55 - 0.75	0.75 - 1