Visegrad Fund •

HUN-REN

Hungarian Research Network

Image reconstruction in proton computed tomography Theory and Experiment in High Energy Physics

Supervisors: Gábor Bíró, Ph.D. Gábor Papp, Ph.D.

Zsófia Jólesz

V4-HEP, 2024.03.13.

MTA

Centre of Excellence

EÖTVÖS LORÁND university | budapest

Outline

- Proton therapy advantages and difficulties
- The Bergen Proton CT Collaboration
- Image reconstruction techniques
- Iterative methods
- The Richardson-Lucy algorithm
- Development of the framework
- Testing the algorithm with phantoms, results
- Summary

Motivation

- Cancer treatment: surgery, chemotherapy, <u>radiotherapy</u>, immunotherapy
- Radiotherapy: uses ionizing particles

Motivation

- Cancer treatment: surgery, chemotherapy, <u>radiotherapy</u>, immunotherapy
- Radiotherapy: uses ionizing particles
- What kind of particles?
 - Photons
 - → <u>Protons</u>
 - Heavy ions

Layout figure of HIT Centre (Heidelberg)

Why is proton therapy so outstanding?

[Seo Hyun Park and Jin Oh Kang. Basics of particle therapy i: physics. Radiation oncology Journal, 29(3):135, 2011.]

[Ugo Amaldi, Manjit Dosanjh, Jacques Balosso, Jens Overgaard, and Brita Sørensen. A facility for tumour therapy and biomedical research in south-eastern europe. 09 2019.]

Problems with imaging – and the solution

- Today X-ray CT is used
- We need to know the range of the protons → Relative Stopping Power (RSP): how much does it slow down in a material compared to water
- Difference between the absorption of photons and the energy loss of protons
 → conversion is not accurate between Hounsfield units* and RSP
- Solution: let's do the imaging with protons! → proton CT

*The quantitative scale of X-ray absorption

X-ray CT vs. proton CT

The Bergen pCT Collaboration

with high energy (~100 MeV) protons **Detector system senses** the signals **Processing the** signals Reconstructing the image

Irradiating the phantom

- Based at the University of Bergen
- Goal: to build a proton CT based on the high-energy particle detectors used in the CERN ALICE collaboration (technology transfer)
- The detector system is based on the ALPIDE chip

The cross-sectional image (A) and the photograph (B) of the ALPIDE chip

Iterative methods for image reconstruction

Initial image

Iterative methods for image reconstruction

Iterative methods for image reconstruction

The Richardson-Lucy algorithm

 x_i^{k+1}

Vector

values

- Statistical iterative algorithm
- Maximum Likelihood -**Expectation Maximization** (ML-EM)
- Originally used in optics
- Input data: from detector or containing RSP Monte Carlo
- MLP calculation
- RSP-distribution calculation

Very difficult technically (~millions of proton trajectories)

- → Using GPU (CUDA)
- → Goal: Finding optimization regarding the number of iterations and protons

 $y_{\text{out,d}} = (t_{\text{out,d}}, \theta_{\text{out,d}})$

 $u_{\rm out}$

u

Depth u

Number of

Zsófia Jólesz V4-HEP, 2024.03.13.

Tracker plar

 $y_{\text{in.d}} = (t_{\text{in.d}}, \theta_{\text{in.d}})$

 $-d_{\text{entry}} \longrightarrow \text{WET}_{\text{phantom}}$

 u_{in}

Development of the framework

Steps of the framework

Evaluating the algorithm

What aspects do we have to consider?

- Spatial resolution
- Accuracy of RSP reconstruction (~density)

[Alme J, et al., Frontiers in Physics. 2020;8(460)]

Evaluating the algorithm - phantoms

Derenzo phantom

- 200 mm diameter water cylinder with 6 sectors of 1.5-6 mm diameter aluminium rods
- Used for measuring spatial resolution

CTP404 phantom

- 150 mm diameter epoxy cylinder with 8 different material inserts with 12.2 mm diameter
- Used for measuring reconstruction accuracy for RSP

The original (left) and the reconstructed (right) Derenzo phantom

projected onto the x, y axis

16

Material	RSP (original phantom)	RSP (reconstructed phantom)	Relative difference	
Air	0.000	5.324*10-4	5.324*10-4	
Teflon	1.833	1.749	0.046	
Delrin	1.363	1.289	0.054	
PMMA	1.179	1.124	0.047	• •
Polystyrene	1.048	0.987	0.058	
Polyethylene	1.003	0.919	0.084	
PMP	0.866	0.813	0.061	The original (left) and the reconstructed (right) CTP404 phantom

The difference between the real and reconstructed RSP values of the different materials

10. iteration

200. iteration

300. iteration

The differences between the original and the reconstructed images

$$MAE = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} |\mathrm{im1}(i,j) - \mathrm{im2}(i,j)|$$

- Absolute Error: number of pixels that differ
- Mean Absolute Error: the average absolute difference between corresponding pixels
- Mean Squared Error: the average squared difference between corresponding pixels
- Root Mean Squared Error: square root of the above

Summary of achievements and future plans

- I have optimized a framework that utilises the Richardson-Lucy algorithm for pCT image reconstruction
- Tested the framework on two phantoms
- TDK Thesis $\rightarrow 3^{rd}$ place
- Algorithm needs further developments for clinical usability → MLP calculation, shorter runtime, realistic phantoms, etc.
- MSc Thesis

Thank you for your attention!

My research was supported by the Hungarian National Research, Development and Innovation Office (NKFIH) grants under the contract numbers OTKA K135515.