

Integrating IpGBT links into the Common Readout Units (CRU) of the ALICE Experiment

Erno DAVID on behalf of the ALICE collaboration Wigner Research Centre for Physics, HUN-REN

This work was supported by OTKA K-135515 and NKFI 2021-4.1.2-NEMZ_KI-2022-00009 grants

> 3 Oct 2023 TWEPP 2023, Geremeas, Sardinia, Italy

IpGBT Coming in ALICE...

- During the LS2 upgrade a brand new DAQ and trigger system had been developed for ALICE for Run 3 and Run 4
- The upgrading sub-detectors are now connected to the DAQ and Trigger systems with rad-hard GBT links through the CRU
- This enables the delivery of timing & control with deterministic latency and taking of data through a single fiber connection
- The GBTx ASIC is not available any more and the new lpGBT supersedes it for new developments or system additions

- During the coming LS3 upgrades, the new FE systems (e.g. ITS3, FoCal) will (have to) use lpGBT links to connect to the CRUs
- The lpGBT links have to be integrated into the existing CRU FW while keeping the compatibility with the existing O2, TRIGGER, and DCS systems

Main features of the present GBT links

- 4.8 Gb/s downlink
- 4.8 Gb/s uplink
- Front-end components:
 - GBTx ASIC
 - external slow-control (I2C, SPI, etc.) controller ASIC (SCA)
 - Versatile Link (VL) optical components

Main features of the new IpGBT with VTRX+

- 2.56 Gb/s downlink,
- 5.12/10.24 Gb/s uplink
- Front-end components:
 - IpGBT ASIC
 - internal slow-control controllers (I2C, SPI, GPIO, ADC, etc.) (and optional external SCA)
 - VL+ optical components

3 Oct 2023 TWEPP 2023

VS.

The goal of this *IpGBT in CRU* project is a *feasibility study* with the following consecutive steps:

- 1. Implementing the *IpGBT-FPGA IP* developed by the CERN EP-ESE team in the CRU *Arria10 GX FPGA* in a single-link **standalone design** and test the functionality at the lowest level (links only with pattern generators / checkers)
- **2. Integrating** the *lpGBT-FPGA IP* in the common CRU FW by removing the GBT interfaces and
 - adding 1 lpGBT interface with full clock & trigger integration
 - adding 12 IpGBT interface (2 TRX banks) with full clock & trigger integration
 - optional: adding 24 IpGBT interface with full clock, trigger, and data integration

 The aim is not a production firmware, but to study and demonstrate that the replacement of the GBT links with IpGBT links in the CRU is possible while keeping the compatibility with the connected systems (O2, TTS, DCS)

Test Setup (simplified)

The setup is the same at Wigner RCP and in the CERN CRU-TRIG integration lab

GBT / IpGBT Differences

DOWNLINK		4.8 Gb/s (120 bits @ 40 MHz)						
Header, internal and external control channels, data channel, forward error correction	GBT downlink	4b	2b	2b	80b		32b	ALTCE
	(CRO FILL) GBT frames:	Header	IC	EC	User Data	User Data		HLICL
differences:								
 64-bit @ 40 MHz vs 120-bit @ 40 MHz 					2.56 Gb/s (64 bits @ 40 MHz)			
 32-bit payload vs 80-bit payload 	IpGBT downlink	4b	2b	2b	32b			_
 2.56 Gb/s vs 4.8 Gb/s 	(CRU -> FEE) IpGBT frames:	Header	IC	EC	User Data	F	EC	

• TX parallel clock 320 MHz vs 240 MHz

UPLINK Header, internal and external control channels, data channel, optional forward error correction		GBT uplink		4b	2b	2b	4.8 Gb/s (120 bits @ 40 MHz) 80b	32b		
		(FEE -> CRU)	GBT frames:	Header	IC	EC	User Data	FEC /DATA		
diff	erences:									
•	128/256-bit @ 40 MHz vs 120-bit @ 40 MHz						5.12 Gb/s (128 bits @ 40 MHz)			
•	96/112/192/224-bit payload vs 80/112-bit payload	IpGBT uplink		2b	2b	2b	96 / 112b	5/12b		
•	5.12 Gb/s or 10.24 Gb/s vs 4.8 Gb/s		IpGBT frames:	Header	IC	EC	User Data	FEC		
•	RX parallel clock 320 MHz vs 240 MHz									
				4	10.24 Gb/s (256 bits @ 40 MHz)					
		IpGBT uplink		2b	2b	2b	192 / 224b	5/12b		
		(FEE -> CRU)	lpGBT frames:	Header	IC	EC	User Data	FEC		

ALICE Common Read-out Unit (CRU)

The Common Read-out Units (CRU) are PCIe add-on cards installed in the First Level Processor (FLP) nodes of the ALICE DAQ system. Main tasks of the CRU:

- Deliver the trigger, timing and read-out control information to the Front-End Electronics
- Deliver detector data to the O2 (FLP Servers) with and/or without processing in the CRU FPGA
- Transport detector control information between the DCS and the FEE
- Take part of the Busy / Drop / Throttle mechanism of the detectors read-out

CRU – Clock and Trigger (GBT version)

GBT CRU

GBT CRU

GBT CRU

solution (concept)

We have to go down to the common 40 MHz clock domain and align data at both sides to the common 40 MHz clock!

GBT CRU

solution (concept)

We have to go down to the common 40 MHz clock domain and align data at both sides to the common 40 MHz clock!

- The PON module recovers the 240 MHz reference clock and a data valid bit with deterministic constant delay to the 40 MHz LHC clock rising edge.
- The IOPLL recovers the 40 MHz dividing the 240 MHz with six. At the output of the IOPLL the two clocks can randomly have six different phase relations.
- If the 40 MHz rising edge is not aligned with the data valid bit then the Control FSM resets the IOPLL.
- Within a reasonable time (practically within a few tries) the data valid bit and the 40 MHz clock will be aligned.

Aligning IpGBT Data Write Enable to the 40 MHz Clock

ALICE

- The IpGBT data write enable bit is generated in the 320 MHz clock domain with a 40 MHz rate.
- We sample this bit with our 40 MHz clock which is in sync with the 320 MHz clock.
- If it is not aligned with the 40 MHz clock then the Control FSM shifts the write enable bit (bit slip).
- In a maximum of eight steps the write enable bit will be aligned with the 40 MHz clock.

Clock and Trigger Integration / Jitter Cleaning

First Test Results (Downlink Clock and Trigger Delay Stability I.)

LHC clock & trigger delivery measurements: Delay and stability from LTU to FEE (VLDB+)

- IN1 (yellow): DATA VALID (1:6 tick): PON link output (CRU CLK-OUT SMA conn.)
- IN2 (green): VLDB+ 40 MHz: lpGBT link output (VLDB+ E0CLK_P SMA conn.)
- TRIGGER: external, LTU 40 MHz output (SCOPEA conn.)

Visualizing the 40 MHz LHC clock, DATA VALID, and IpGBT TX WRITE_ENABLE flags via the clock chain (1 or 12 links being implemented) with infinite persistence for a few hours while challenging the stability with: **optical link disconnections**, **power cycling**, and **PLL forced initializations**

- DATA_VALID (1 link, 12 links) → stable with the same delay (no glitches, phase jumps observed, continuous 10¹² clock cycle)
- TX Write_Enable (1 link, 12 links) → stable with the same delay (no glitches, phase jumps observed, continuous 10¹² clock cycle)
- VLDB+ ECLK0 (1 link, 12 link, internal feeding) → stable with the same delay (no glitches, phase jumps observed, continuous 10¹² clock cycle)

First Test Results (Downlink Clock and Trigger Delay Stability II.)

Two options for the clock integration (external/internal) has been tested for delay stability and with simple jitter measurements. (1 link only.)

IpGBT TX_REF: externally distributed to the IpGBT transceiver banks through one of the CRU's two on-board jitter cleaner PLL. (The other filters the incoming 240 MHz PON RX_CLK.)

IpGBT TX_REF: internally distributed to the IpGBT transceiver banks ("Only" the incoming 240 MHz PON RX_CLK is cleaned with one of the CRU's two on-board jitter cleaner PLLs.)

No instabilities or significant difference in jitter has been observed. Further jitter analysis may follow.

3 Oct 2023 TWEPP 2023

Link ID	GBT Mode Tx/Rx	Loopback	GBT MUX	Datapath mode	Datapath status	RX freq (MHz)	TX freq (MHz)	Status	Optical power (uW)	System ID	FEE ID
0 1 2 3 4 5 6	GBT/GBT GBT/GBT GBT/GBT GBT/GBT GBT/GBT GBT/GBT	None None None None None None None	TTC:CTP TTC:CTP TTC:CTP TTC:CTP TTC:CTP TTC:CTP TTC:CTP TTC:CTP	Streaming Streaming Streaming Streaming Streaming Streaming Streaming	Enabled Enabled Enabled Enabled Enabled Enabled Enabled	259.55 320.44 321.17 320.02 317.92 313.63 320.63	320.63 320.63 320.63 320.63 320.63 320.63 320.63	DOWN DOWN DOWN DOWN DOWN DOWN	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 900.0	0x3 0x3 0x3 0x3 0x3 0x3 0x3 0x3 0x0	0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
7 8 9 10 11	GBT/GBT GBT/GBT GBT/GBT GBT/GBT GBT/GBT	None None None None None	TTC:CTP TTC:CTP TTC:CTP TTC:CTP TTC:CTP	Streaming Streaming Streaming Streaming Streaming	Enabled Enabled Enabled Enabled Enabled	319.88 298.17 254.86 257.52 249.85	320.63 320.63 320.63 320.63 320.63 320.63	DOWN DOWN DOWN DOWN DOWN	0.0 0.0 0.0 0.0 0.0	0x0 0x0 0x0 0x0 0x0 0x0	0x0 0x0 0x0 0x0 0x0 0x0

Test results:

- The x12 link lpGBT module is recognized by the O2 software (link status, TX/RX frequency, etc.)
- The IpGBT ASIC "Loopback Downlink Group Data Source" mode was used with built in checkers in the IpGBT module
- The links were tested one-by-one with a single VLDB+ for 1 hour / link (10¹⁴ bits) \rightarrow no errors
- Integration with the Datapath wrapper is ongoing

Summary:

- x12 link lpGBT module (with 10.24 Gbps / FEC12 uplink mode) implemented inside the CRU-FW
- No visible phase jumps in the VLDB+ 40 MHz clock (10¹² clock cycle)
- Stable data loopback through the IpGBT ASIC ("Loopback Downlink Group Data Source" mode) (10¹⁴ bits per link)

Further work:

- Connect the IpGBT module with the DMA and Slow Control modules
- Improve stability between rebuilt: floor planning and design lock
- Characterize skew between links
- Clock and trigger analysis
- Test with detector specific user logic at full 10.24 Gbps speed

Thank You for Your Attention!

BACK-UP

Clock and Trigger Integration / Jitter Cleaning (Option B, alternative)

Uplink Integration

ALICE

For the uplinks testing we have the following options:

- Use the built-in pattern generators in the IpGBT ASIC and check the received payload in the IpGBT module.
- Use the CRU firmware's Datapath Wrapper which is able to record the incoming raw data. Currently it supports normal GBT (80-bit) and wide bus mode (112-bit) mode, so it can check only part of the IpGBT data
- Later: write a dedicated user logic to process the full IpGBT payload and creates the standard ALICE data packets (SAP) and sends them to the PCIe DMA (through the Datapath Wrapper).

For our uplinks testing we have used the built in pattern generators and checkers with x12 lane 10.24 Gbps (FEC12) links. Test results so far:

- We have tested 1 standalone link for a few hours → no errors
- We have tested a 12-link implementation, the links one-by-one with a single VLDB+ for 1 hour /link → no errors
- Integration with the Datapath wrapper is ongoing (may evolve till the conference)

Testing the IpGBT Control Channels

• The IpGBT ASIC supports both EC and IC 2-bit control channels:

- EC channel is backward compatible. It can connected to an GBT SCA on the FEE cards
- IC channel requires upgrade to a newer GBT-SC firmware module provided by CERN Electronics group

- For control channel testing we can use the low level IC and EC field tester Python scripts used during the original CRU FW development. We can read and write the ASICs registers with them in the same way.
- To do this we have started to update the CRU FW with the new slow control module (GBT-SC IP) of the EP_ESE team and modify our software scripts to support the new IpGBT ASIC control registers (IC).
- The aim is to test reading out a few registers only as a demonstration.

