Soft and hard interactions in high multiplicity PP collisions at LHC energies

Particles & Plasmas Symposium

HZDR Dresden & Kulturforum Synagoge Görlitz

22-26 06 2025

GÁBOR BÍRÓ

biro.gabor@wigner.hun-ren.hu

Guy Paic Leonid Serkin Gergely Gábor Barnaföldi

> arXiv:2403.07512 arXiv:25XX.XXX

QGP - QGP everywhere...

QGP - QGP everywhere...

Phys. Rev. Lett. 116, 172301 (2016) Nature Physics volume 13, 535-539 (2017)

QGP - QGP everywhere...

ATLAS Preliminary \s=13 TeV, L_{ini}≈14 nb⁻¹

Data 2015

0.5<p_x^{a,b}<5.0 GeV

N_{ch}^{rec}≥120

Phys. Rev. Lett. 116, 172301 (2016) Nature Physics volume 13, 535-539 (2017) Nature Physics volume 15, 214–220 (2019)

Collective flow in every system

- High quality, multiplicity dependent (PID) data for various collision systems
- Traditional Blast-wave fits (Phys. Rev. C, 48 (1993), pp. 2462-2475):

$$\frac{dN}{p_T dp_T} \propto \int_0^R r dr m_T I_0 \left(\frac{p_T \sinh \rho}{T_{kin}}\right) K_1 \left(\frac{m_T \cosh \rho}{T_{kin}}\right)$$

where $\rho = \tanh^{-1}(\beta_T)$

Collective flow in every system

- High quality, multiplicity dependent (PID) data for various collision systems
- Traditional Blast-wave fits (Phys. Rev. C, 48 (1993), pp. 2462-2475):

$$\frac{dN}{p_T dp_T} \propto \int_0^R r dr m_T I_0 \left(\frac{p_T \sinh \rho}{T_{kin}}\right) K_1 \left(\frac{m_T \cosh \rho}{T_{kin}}\right)$$

where
$$\rho = \tanh^{-1}(\beta_T)$$

Problem of means

- the observations we are doing and the accompanying theories are based on "means"
 - mean multiplicity, transverse, momentum, anisotropy, strangeness...
- The models can get the most prominent features but never all the details of the interactions if there are multiple sources that contribute

Problem of means

• the observations we are doing and the accompanying theories are based on "means"

Problem of means

Small differences in the mean pt's but important differences in the spectra!

- 1) the mean is always close to the threshold in fast diminishing spectra
- 2) by getting a "mean" value we learn very little about the high p_T behavior
- 3) an agreement in the means among various models does not *mean* that they agree on the details!

- Systems:
 - 2.76 TeV, 5.02 TeV, 13 TeV (pp → ch)
- p_T ranges:
 - 0.15 GeV $\leq p_T \leq p_0$
 - p_0 in [0.4, 3.0], $dp_T = 0.05$
- Fit function: naive Boltzmann

$$f(p_T) = A \exp\left(-\frac{p_T}{T}\right)$$

- Systems:
 - 2.76 TeV, 5.02 TeV, 13 TeV (pp → ch)
- p_T ranges:
 - 0.15 GeV $\leq p_T \leq p_0$
 - p_0 in [0.4, 3.0], $dp_T = 0.05$
- Fit function: naive Boltzmann

$$f(p_T) = A \exp\left(-\frac{p_T}{T}\right)$$

- Systems:
 - 2.76 TeV, 5.02 TeV, 13 TeV (pp → ch)
- p_T ranges:
 - 0.15 GeV $\leq p_T \leq p_0$
 - p_0 in [0.4, 3.0], $dp_T = 0.05$
- Fit function: naive Boltzmann

$$f(p_T) = A \exp\left(-\frac{p_T}{T}\right)$$

- Systems:
 - 2.76 TeV, 5.02 TeV, 13 TeV (pp → ch)
- p_T ranges:
 - 0.15 GeV $\leq p_T \leq p_0$
 - p_0 in [0.4, 3.0], $dp_T = 0.05$
- Fit function: naive Boltzmann

$$f(p_T) = A \exp\left(-\frac{p_T}{T}\right)$$

 Best value of p₀ is determined from the goodness of fit

- Low p_T, soft part
 - → traditional Boltzmann-fit

- High p_T part
 - → (cut distribution Boltzmann-fit)

- "Inclusive" mean p_T : composite of two very different region
- Both the low $p_{\scriptscriptstyle T}$ (collective, thermal part; from the Boltzmann fit) and high $p_{\scriptscriptstyle T}$ (fragmentation; from subtracted spectrum) are ~constant of multiplicity and collision energy

- "Inclusive" mean p_T : composite of two very different region
- Both the low p_T (collective, thermal part; from the Boltzmann fit) and high p_T (fragmentation; from subtracted spectrum) are ~constant of multiplicity and collision energy

- "Inclusive" mean p_{τ} : composite of two very different region
- Both the low p_T (collective, thermal part; from the Boltzmann fit) and high p_T (fragmentation; from subtracted spectrum) are ~constant of multiplicity and collision energy
- High p_T part: weak dependence

- "Inclusive" mean p_T : composite of two very different region
- Both the low p_T (collective, thermal part; from the Boltzmann fit) and high p_T (fragmentation; from subtracted spectrum) are ~constant of multiplicity and collision energy
- High p_T part: weak dependence

~12% for $p_T < 4 \text{ GeV/c}$

- "Inclusive" mean p_T : composite of two very different region
- Both the low $p_{\scriptscriptstyle T}$ (collective, thermal part; from the Boltzmann fit) and high $p_{\scriptscriptstyle T}$ (fragmentation; from subtracted spectrum) are ~constant of multiplicity and collision energy
- High p_T part: weak dependence

```
~12% for p_T < 4 GeV/c ~<1% for p_T < 8 GeV/c
```


- "Inclusive" mean p_{τ} : composite of two very different region
- Both the low p_T (collective, thermal part; from the Boltzmann fit) and high p_T (fragmentation; from subtracted spectrum) are ~constant of multiplicity and collision energy
- High p_T part: weak dependence above ~8 GeV/c
- Questions the correct interpretation of the blast wave flow in pp collisions → artifact of the constrained fit ranges..?

Summary

- The mean of the distributions can be **ill defined** (not to mention the extrapolations)
- The exponential-like Blast-wave fits (and the extracted flow properties) can be ill defined
- The extracted temperature (and therefore many other quantities) **strongly depends** on the applied definitions
- The soft/hard limit is controversial and question of interpretation

Thankyou for your attention!