D-meson and hadron correlations in the ALICE experiment and in simulations

Frajna Eszter

10/14/2019

Physics motivation

- The direction of the produced particles are correlated
- Associated charged particles and trigger D meson
 - sensitive to the charm-quark production, fragmentation, and hadronisation processes in proton-proton collisions
- Pseudorapidity(η) and azimuth angle(ϕ)
- Calculating the $\Delta\eta$ and $\Delta\phi$ differences
- Associated yield per trigger

$$\frac{1}{N_{trigger}}\frac{d^2N_{assoc}}{\Delta\varphi d\Delta\eta}$$

Reconstruction of D mesons in ALICE

- pp and p-Pb collisions at $\sqrt{s_{NN}}$ =5.02 TeV
- charged hadron tracks reconstructed in the ITS and TPC
- topological cuts based on angles, secondary vertex
- D^o and D⁺ raw yields extracted from invariant mass fits in several p_T ranges
- D^{*+} yields from invariant mass difference $\Delta M = M(K\pi\pi)-M(K\pi)$

D meson reconstruction:

$$\begin{array}{l} \mathrm{D^{+} \rightarrow \mathrm{K^{-}}\pi^{+}\pi^{+}} \\ \mathrm{D^{*+} \rightarrow \mathrm{D^{0}}\pi^{+} \rightarrow \mathrm{K^{-}}\pi^{+}\pi^{+}} \\ \mathrm{D^{0} \rightarrow \mathrm{K^{-}}\pi^{+}} \end{array}$$

Evaluation of the correlation

- The two-dimensional correlation distributions are affected by
 - the limited detector acceptance (mixed event technique)
 - reconstruction efficiency of the associated tracks ($A^{assoc} \epsilon^{assoc}$)
 - the variation of those values for prompt D mesons ($A^{trig} \epsilon^{trig}$)
- In order to correct for these effects
 - a weight equal to $1/(A^{assoc} \epsilon^{assoc})$ and $1/(A^{trig} \epsilon^{trig})$ was assigned to each correlation pair and a weight of $1/(A^{trig} \epsilon^{trig})$ was applied also to the entries in the D-meson invariant-mass distributions
- The per-trigger angular-correlation distribution was obtained by subtracting the sideband-region correlation distribution from the peak-region one:

$$\tilde{C}_{\text{inclusive}}(\Delta\varphi,\Delta\eta) = \frac{p_{\text{prim}}(\Delta\varphi)}{S_{\text{peak}}} \left(\frac{C(\Delta\varphi,\Delta\eta)}{\text{ME}(\Delta\varphi,\Delta\eta)} \Big|_{\text{peak}} - \frac{B_{\text{peak}}}{B_{\text{sidebands}}} \frac{C(\Delta\varphi,\Delta\eta)}{\text{ME}(\Delta\varphi,\Delta\eta)} \Big|_{\text{sidebands}} \right)$$

• Bring the contribution of the feed-down contamination back to an unbiased value:

$$\tilde{C}_{\text{inclusive}}^{\text{corr}}(\Delta\varphi) = \tilde{C}_{\text{inclusive}}(\Delta\varphi) \left[\frac{A_{\text{NS}}^{\text{prompt}}(\Delta\varphi)}{A_{\text{NS}}^{\text{total}}(\Delta\varphi)} \cdot f_{\text{prompt}} + \frac{A_{\text{NS}}^{\text{feed}-\text{down}}(\Delta\varphi)}{A_{\text{NS}}^{\text{total}}(\Delta\varphi)} \cdot (1 - f_{\text{prompt}}) \cdot c_{\text{FD}-\text{bias}}(\Delta\varphi) \right]$$

D-h correlation peak fits

Average of D⁰, D⁺, D^{*+} contributions The fit function:

- a constant term b describing the flat contribution below the correlation peaks,
- a generalised Gaussian term describing the nearside peak,
- a Gaussian reproducing the away-side peak.

 $\pmb{\alpha}$: is related to the variance of the function, hence to its width

 β : drives the shape of the peak (the Gaussian function is obtained for β = 2)

$$f(\Delta \varphi) = b + \frac{Y_{\rm NS} \cdot \beta}{2\alpha \Gamma(1/\beta)} \cdot e^{-\left(\frac{\Delta \varphi}{\alpha}\right)^{\beta}} + \frac{Y_{\rm AS}}{\sqrt{2\pi}\sigma_{\rm AS}} \cdot e^{\frac{(\Delta \varphi - \pi)^{2}}{2\sigma_{\rm AS}^{2}}}$$

near-side widths of the correlation peaks are described by the square root of the variance:

$$\alpha \sqrt{\Gamma(3/\beta)/\Gamma(1/\beta)}$$

Comparison of results in pp and p–Pb collisions

- The height of the near-side correlation peak is increasing for increasing values of the D-meson p_T.
 - This reflects the production of a higher number of particles in the jet accompanying the fragmenting charm quark, when the energy of the latter increases.
- A similar, though milder, effect can be observed also for the away-side peak.

Comparison of results in pp and p–Pb collisions

Near-side peak

• A tendency for a narrowing of the near-side peak with increasing p_T^D , signalled by a decrease of the peak width, is also observed.

Away-side peak

- The away-side yields show an increasing trend with p_T^D values in the two collision systems.
- The away-side peak widths show compatible values in pp and p–Pb collisions in all kinematic ranges.

No significant impact from cold-nuclear-matter effects on the fragmentation of charm quarks within the current precision.

Results in p–Pb collisions as a function of the event centrality

No strong centrality dependence on the correlation peaks, which could have possibly been induced by nuclear-matter effects or multiplicity-dependent vacuum-QCD effects.

Comparsion to Monte Carlo simulations (near-side)

PYTHIA6: LO generator with initial and final state parton shower, Lund string fragmentation.

PYTHIA8: also includes multiple-parton interactions.

HERWIG: NLO including heavy flavor, cluster hadronisation model

POWHEG+PYTHIA: NLO calculation of hard processes, followed by Lund fragmentation

POWHEG LO+PYTHIA: hard process stopped at the LO level, Lund fragmentation

Sensitivity to fragmentation and parton shower

- Best description by POWHEG+PYTHIA6 and POWHEG LO+PYTHIA6
- Yields typically underestimated by HERWIG
- NLO models predict slightly broader peaks

Comparsion to Monte Carlo simulations (away- side)

PYTHIA6: LO generator with initial and final state parton shower, Lund string fragmentation.

PYTHIA8: also includes multiple-parton interactions.

HERWIG: NLO including heavy flavor, cluster hadronisation model

POWHEG+PYTHIA: NLO calculation of hard processes, followed by Lund fragmentation

POWHEG LO+PYTHIA: hard process stopped at the LO level, Lund fragmentation

Sensitivity to parton shower and fragmentation

- Best description by POWHEG+PYTHIA6 and POWHEG LO+PYTHIA6
- PYTHIA6 (Perugia11) overpredicts both the yields and widths
- PYTHIA8 (4C) overpredicts low-p_T yields and widths

Comparsion to Monte Carlo simulations (baseline)

PYTHIA6: LO generator with initial and final state parton shower, Lund string fragmentation.

PYTHIA8: also includes multiple-parton interactions.

HERWIG: NLO including heavy flavor, cluster hadronisation model

POWHEG+PYTHIA: NLO calculation of hard processes, followed by Lund fragmentation

POWHEG LO+PYTHIA: hard process stopped at the LO level, Lund fragmentation

Sensitive to the underlying event

- Decrease toward higher pTassoc (expected)
- $p_T^{assoc} < 1$ GeV: best description by PYTHIA
- $p_T^{assoc}>1$ GeV: best description by HERWIG
- POWHEG NLO and LO are the same in all ranges (not trivial since influence from NLO charm contributions would be expected)

Further investigations using PYTHIA

Simulations without detector effects

D meson and hadron correlation at 5 TeV

5<p_Ttrigger<8

 $1 < p_T^{assoc} < 2$

Pion, proton, kaon and hadron correlation at 5TeVTeV $5 < p_T^{trigger} < 8$ EF,RV, Universe 5 (2019) no. 5, 118 $3 < p_T^{assoc} < 5$

Prompt and late D meson separation

D meson from c quark

D meson from the decay of B meson

Peaks are consistent with Gaussian.

GenGauss parameter decreases with p_T , together with σ . (Peaks are getting both narrower and "peakier" towards high p_T).

Prompt and non-prompt contributions can be separated based on correlation shapes.

Full detector simulation in the ALICE framework

D meson and hadron correlation at 5 TeV $8 < p_T^{assoc} < 16$ 0.3 $< p_T^{trigger} < 1.0$

Different tunes

- 4C (Tune 5)
- Monash (Tune 14)
- MonashStar (Tune 17)

Baseline

- Peaks are predicted similarly
- Significantly lower baseline for MonashStar (~20% at max)
- Different underlying events

Different colour reconnection modes

- Mode o : The MPI-based original Pythia 8 scheme.
- Mode 1 : The new QCD based scheme.
- Mode 2 : The new gluon-move model.
- Reconnection off.

A tendency for a narrowing of the near-side and away-side peak with increasing p_T^D .

An increasing trend of the near-side and away-side yield with increasing p_T^{D} .

Baseline is significantly higher in CR off. Expected since CR=off corresponds to higher average multiplicities.

Note: Other parameters are mostly the same => difference only in underlying event.

Different parton levels

Near-side yield: significant contribution of FSR at higher trigger $p_{T}^{trigger}$.

Near-side width and shape: no change, maybe it is driven by fragmentation/hadronic state.

Away-side yield: Significant contribution from MPI.

Away-side width: Contributions of parton-level effects make it wider as expected (especially ISR). FSR=off overshoots all=ON.

Baseline: Contributions of parton-level effects to underlying event as expected. Weak p_T -leading dependence.

Heavy-flavour fragmentation (Lund vs. Peterson model)

Peterson formula is a fragmentation function for heavy quarks. We use this instead of the Lund formula. For fits to experimental data, better agreement can be obtained.

No significant difference between the two model.

No c-quark mass

Disable the charm quark mass in order to sort the mass cone effect and the color charge effect.

Slight differences at near-side width and yield.

Baseline: Slight difference in underlying event at low p_T.

Summary

ALICE measurements of azimuthal-correlation distributions of D^o, D^{*+}, and D⁺ mesons with charged particles in pp and p–Pb collisions at 5.02 TeV

- No strong dependence on system (pp vs. pPb) or on event multiplicity.
- The fragmentation and hadronisation of charm quarks is **not strongly influenced by cold-nuclear-matter effects.**
- Best description by POWHEG+PYTHIA: importance of NLO processes in correlations.
- HERWIG underestimates near-side yields and baseline at low p_T: shortcomings of cluster fragmentation model.

Investigation of correlations using simulation components

- Correlations: a tool to statistically separate prompt and non-prompt contributions.
- Different PYTHIA tunes: importance of underlying event contribution to background.
- Important role of color reconnection, but no significant difference between colour reconnection models.
- Contribution of parton-level effects (ISR,FSR and MPI) to underlying event and away-side peak
- No significant difference depending on Lund vs. Peterson fragmentation model.
- Slight differences when setting the c-quark mass to o: role of dead cone effect in fragmentation.

Thanks for your attention!

Prompt and late D meson separation

Monte Carlo simulations

PYTHIA

- Allows for the generation of ultra-relativistic collisions of leptons and/or hadrons.
- It employs 2 to 2 QCD matrix elements evaluated perturbatively with leading-order precision.
- The parton showering follows a leading-logarithmic p_T ordering, with soft-gluon emission divergences.
- The hadronisation is handled with the Lund string-fragmentation model.

HERWIG

- Allows one to perform Monte Carlo simulations at NLO accuracy for most of the Standard Model processes, including heavy-quark production.
- The parton showering is performed with an angular ordering of the fragments, which correctly takes the coherence effects for soft-gluon emissions into account.
- Hadronisation is handled via the cluster hadronisation model.

POWHEG

• A pQCD generator capable of calculating hard-scattering matrix elements with NLO accuracy, which can be coupled to Monte Carlo generators, like PYTHIA or HERWIG for the parton showering and hadronisation of the produced partons.

POWHEG+PYTHIA

• Stopping the computation of the hard-scattering matrix elements at leading-order accuracy, before passing the generated partons to PYTHIA for the showering and hadronisation.

Comparison to Monte Carlo simulations (near-side)

Near-side yield

- POWHEG+PYTHIA6 predicts the largest values of the near-side yields, while POWHEG LO+PYTHIA6 shows about 10% lower yields.
 - This difference could be explained by a different relative contribution of the NLO production mechanisms, in particular the gluon splitting, present already at the level of the hard scattering for POWHEG+PYTHIA6.
- PYTHIA8 provides near-side yield values comparable to those of POWHEG LO+PYTHIA6, while PYTHIA6 yields are slightly lower.
- HERWIG predictions for near-side yields are the lowest, except for the $0.3 < p_T^{assoc} < 1 \text{ GeV/c}$ range, where they are comparable to PYTHIA8 expectations.
- The closest description of data is provided by POWHEG+PYTHIA6 and POWHEG LO+PYTHIA6, with data points lying between the two predictions.

Near-side width

- POWHEG+PYTHIA6 give the broadest peaks, followed by POWHEG LO+PYTHIA6, with increasing difference between the two model predictions with increasing p_T^{assoc} .
- PYTHIA8 gives similar widths as POWHEG LO+PYTHIA6, while PYTHIA6 widths are generally lower.
- HERWIG predictions are consistent with PYTHIA6 for $p_T^{assoc} < 1 \text{ GeV/c}$, and are generally lower for $p_T^{assoc} > 1 \text{ GeV/c}$.
- POWHEG+PYTHIA6 provides systematically larger widths than what is observed in the data, though in general they are compatible within the total uncertainties, point-by-point.

Comparison to Monte Carlo simulations (away-side)

Away-side yield

- POWHEG+PYTHIA6 predicts the smallest away-side yields, with about 5%-10% smaller values, than POWHEG LO+PYTHIA6 expectations
- HERWIG predicts similar yields as POWHEG LO+PYTHIA6 for the integrated p_T^{assoc} range (with larger values for 0.3 < $p_T^{assoc} < 1 \text{ GeV/c}$ and smaller values for $p_T^{assoc} > 1$).
- PYTHIA8 and PYTHIA6 predictions tend to overpredict awayside yields.
- The best description of the away-side yields is provided by POWHEG+PYTHIA6 and POWHEG LO+PYTHIA6 over the full kinematic range, as well as by HERWIG for $p_T^{assoc} > 1$ GeV/c, as in the near-side peak case.

Away-side width

- The largest values of the away-side peak width are given by PYTHIA6 event generator, in particular for large values of p_T^{assoc} .
- The expectations from all the other models are very similar, with POWHEG+PYTHIA6 being in general the lowest of them.
- All the models are in agreement with the results, except for PYTHIA6, which tends to systematically overpredict the data points.

Comparison to Monte Carlo simulations (baseline)

Expected:

- baseline values decrease with increasing p_T^{assoc}
- mild increasing trend with p_T^D: POWHEG+PYTHIA6 and POWHEG LO+PYTHIA6 predict a larger increase than HERWIG and PYTHIA

Not trivial:

- POWHEG+PYTHIA6 and POWHEG LO+PYTHIA6: same baseline values for all the kinematic ranges
 - different treatment of next-to leading order contributions to charm production

Best description of the results,

- for low p_T^{assoc} values is provided by PYTHIA, while HERWIG overestimates the values by ~15% and POWHEG+PYTHIA6 underpredicts them by 20%
- for p_T^{assoc} > 1 GeV/c is provided by HERWIG, while PYTHIA and POWHEG+PYTHIA6 tend to underpredict data values

