Mean transverse momentum scaling at LHC energies using deep learning methods

23rd ZIMÁNYI SCHOOL

WINTER WORKSHOPON on HEAVY ION PHYSICS

04-08 12 2023

GÁBOR BÍRÓ

biro.gabor@wigner.hun-ren.hu

Gergely Gábor Barnaföldi Gábor Papp

<u> Motivaton - data, data, more data</u>

Autonomous driving Medical imaging Predictive maintenance Anomaly detection, fake news detection Search of BSM physics Stock price prediction Natural Language Processing Virtual Assistants Virtual reality Colorization of Black and White Images Content generation, examples:

https://huggingface.co/spaces/stabilityai/stable-diffusion

Noise $\epsilon \mu + \epsilon \cdot c$

Motivaton - data, data, more data

	*Computer History Museum
2006	2016
28 MB	128 GB
12840	12800 2 x
202	0
1 TB	Micron
	1TB ∰2 ¥30 ©⊎ 42

LHC in numbers: 2013 and now:

Data:	15 PB/year	VS	200+ PB/year
Гаре:	180 PB	VS	740+ PB
Disk:	200 PB	VS	570+ PB
HS06:	2M	VS	100+ B

Storing and distributing the data is only one side of the challange

\rightarrow analysis, simulations

Scaling of p_T with event multiplicity

From experimental data:

Parton shower and hadronization

Hadronization

Partons → hadrons Non-perturbative process

Lund-fragmentation (Comput.Phys.Commun. 27 (1982) 243)

$$f(z) = \frac{1}{z}(1-z)^a e^{\frac{-bm_T^2}{z}}$$

Train and validation sets

Monte Carlo data: Pythia 8.303

Monash tune

Rescattering and decays turned off CR, ISR, FSR, MPI: turned on Selection:

- All final particles with |y| < 4.0Event number:
- Train: 5M events. $\sqrt{s} = 7 \text{ TeV}$
 - ~uniform multiplicity distribution

Input:

Parton level, before the hadronization process Standardized n, ϕ , p_T , m variables

Hadron level output:

Charged event multiplicity, mean event transverse momentum

1.0

Models

Stacking more layers: solve complex problems more efficiently, get highly accurate results **BUT:**

Vanishing/exploding gradients

ResNet:

Residual blocks with "skip connections"

Used hardwares: Nvidia Tesla T4, GeForce GTX 1080 @ Wigner Scientific Computing Laboratory

Framework: Tensorflow 2.4.1, Keras 2.4.0

Results

Proton-proton @ 7 TeV, Training + Validation

Total event multiplicity: Mean transverse momentum vs event multiplicity:

KNO-scaling

The collapse of multiplicity distributions P_n onto a universal scaling curve:

$$P_n = \frac{1}{\langle n \rangle} \Psi\left(\frac{n}{\langle n \rangle}\right)$$

The scale parameters governed by leading particle effects and the growth of average multiplicity

Violation of the scaling at high CM energies: not fully understood (relation to MPI?)

Nuclear Physics B 40 (1972), 317–334.

(Nucl. Phys. B Proc. Suppl. 92 (2001). 122–129) **11**

Test of KNO-scaling for the predictions

Test of KNO-scaling for the predictions

Scaling function for multiplicities at various energies: $P_n = \frac{1}{\langle n \rangle} \Psi\left(\frac{n}{\langle n \rangle}\right)$ Charged hadron multiplicities: good overlap and agreement Nucl.Phys.B Proc.Suppl. 92 (2001) 122-129

Test of $< p_T >$ scaling for the predictions

What about larger (small) systems?

Test of scaling properties for the predictions for p-Pb

Summary

Developed hadronization models with different complexities to test scaling properties

Training only at a single c.m. energy, predictions at other energies

Generalization to other CM energies: KNO and p_T scaling

Valuable input for MC developments

Prospects

Architecture variations (hyperparameter fine-tuning) Heavy ion (centralities, collective effects...)

Thank you for your attention!

The research was supported by OTKA grants K135515, NKFIH 2019-2.1.6-NEMZKI-2019-00011, 2019-2.1.11-TÉT-2019-00078, 2019-2.1.11-TÉT-2019-00050, 2020-2.1.1-ED-2021-00179, the **Wigner Scientific Computating Laboratory** (former Wigner GPU Laboratory) and RRF-2.3.1-21-2022-00004 within the framework of the Artificial Intelligence National Laboratory.