Disentangling the gluon Bremsstrahlung effects from the underlying event in high-multiplicity pp collisions

Gyula Bencédi (Wigner RCP)

Based on J.Phys.G 48 (2020) 1, 015007 Phys.Rev.D 104 (2021) 1, 016017 Eur.Phys.J A (2021) 57, 301

Supported by OTKA FK131979, K135515, NKFIH 2019–2.1e.11-TÉT-2019-00078

Motivation – collectivity in small systems but ...

superSONIC for p+p, √s=5.02 TeV, 0-1%

... no effect of jet quenching found so far

- -> Broadening of recoil jet acoplanarity -> not conclusive
- -> Similar effect observed in the PYTHIA model (no jet-quenching)
- -> Alternative: vacuum QCD effects produce collective behavior

Goal: Study high-multiplicity pp events in the **PYTHIA model** to **understand** event **selection biases**

Methods – PYTHIA 8 model

PYTHIA MC event generator: standard "tool" in HE physics for modeling pp collisions: LO 2->2 process + parton shower (Initial- and Final state radiation), Color Reconnection, MPI

Multiparton interactions:

- -> more than one hard parton scattering in a pp collision
- -> explain increased activity in the UE in a hard scattering

See e.g.: EPJC 74, 3024 (2014)

Color reconnection:

- -> reconnect color strings before hadronization
- -> explain experimental data: average p_τ, flow -> causing collective behavior

See e.g.: PRL 111, 042001 (2013)

Methods - The underlying event (UE)

1001-60 Transver ransy (se Away 1201220 $\Delta \phi$ [rad 1/(Ν_{ev}ΔηΔφ)Ν_{ch} _____ ALICE pp, √s = 13TeV $p_{-}^{\text{track}} > 0.15 \text{ GeV}/c, |\eta| < 0.8$ Away region Bose-Einstein & Fermi-Dirac Transverse region (*: incoming lines are crossed) JHEP 04 (2020) 192 35 10 15 20 25 30 40

X-Y Planc

(GeV/c)

Jet-like Deaks

- -> Underlying event: unavoidable background; everything but hard scattered partons (MPI, ISR/FSR)
- -> Measurable in experiment: charged particle number densities, self-normalized quantities, ...etc.
- -> Transverse region ($\pi/3 < |\Delta \phi| < 2\pi/3$): sensitive to UE, insensitive to $p_{T,trig}$

Methods – The event activity classifier R_{T}

- -> New set of observable to probe the structure of the UE (EPJ C (2016) 76, 299)
- -> relative transverse activity classifier R₇

$$R_{\rm T} = \frac{N_{\rm ch}^{\rm trans.}}{\langle N_{\rm ch}^{\rm trans.} \rangle}$$

-> R_T: defined in the Transverse region, adopted in the Underlying Event analysis

=> Goal:

- study how event selection based on R_{τ} biases towards and away regions
- study observable more suitable for jet quenching searches in small systems

Methods – The " I_{pp} "

 I_{AA} : ratio of jet-like yield from AA to the one from pp collisions

 -> interplay between the parton production spectrum and energy loss in the medium
 -> Similar observation by CMS

(CMS-PAS-HIN-12-010)

*I*_{pp}: (*dN/dp*_T) _{RT class} to (*dN/dp*_T) _{RT>0} ALICE coll. arXiv:2204.10157v1

=> Goal: Perform standard two-particle azimuthal correlation analysis to study jet-quenching effects

Methods - jet-like signal $C(\Delta \eta \Delta \phi)$ extraction (J.Phys.G 48 (2020) 1, 015007)

-> structure observed in the Transverse region ($\pi/3 < |\Delta \phi| < 2\pi/3$): associated yield increases with R_{τ}

- -> Contribution to the Towards/Away regions removed with mixed event technique
- -> Underlying event subtracted using Zero Yield at Minimum method
- -> Evolution of jet signal with *R*_T is studied

Results: Charged particle yield as a function of $\Delta \varphi$ (J.Phys.G 48 (2020) 1, 015007)

R_T>2.5: peak at Δφ~2 rad -> region where avg. MPI saturates: presence of a third jet -> selection bias

->Experimentally observed: increase of particle yield with R_{T}

ALICEColl. arXiv:1910.04457v2

- -> Toward region:
 yield increases with R_T
- -> Away region: broadening with R_τ

-> Quantify the effect: calculate the ratio of yields from different R_{T} classes to the R_{T} -integrated one: I_{pp}

Results: Ratio of yields in R_{τ} event classes = I_{pp} (J.Phys.G 48 (2020) 1, 015007)

using event classification (R_{τ}) and study observables in the Away region

Results – Dihadron correlation vs. UE activity (PRD 104 (2021) 1, 016017)

Results – Baryon-to-meson ratio vs. UE activity (PRD 104 (2021) 1, 016017)

Interaction of UE and q/g using heavy flavors

Eur. Phys. J. A (2021) 57, 301

Study UE event activity with light- and heavy flavor triggers
 Light (heavy) flavors initiated by q/g (q) => color charge difference
 Flavor-dependent fragmentation functions

Observation: heavy flavor hierarchy is due to CR and not hadron mass (light fl., PRD 99(3), 034027 (2019))

PYTHIA string fragmentation bias:

g (q) are connected to two (one) string pieces \rightarrow pion sample biased with enhanced gluons \rightarrow pion trigger larger CR effect expected

Selection of q/g initiating partons B-jets / pions proxies for q/g jets misidentification rates: 5–10% / 10-25%

Goal: Test flavor hierarchy in UE with CR

Results – flavor separation with different CR strenghts (measures UE activity) ¹³ *Eur. Phys. J. A* (2021) 57, 301

Summary

- → High-multiplcity pp events can be made bias-free using event classification based on R_T and study observables in the Away region (J.Phys.G 48 (2020) 1, 015007)
- Minimum activity Transverse region (R_T,_{min}) reduces selection bias due to gluon radiation (PRD 104 (2021) 1, 016017)
- Flavor of the leading process affects the UE (EPJ A (2021) 57, 301)

