# Quantifying the Underlying Event in high-energy pp collisions from RHIC to LHC 

G.G. Barnaföldi, A.N. Mishra, G. Paic, and G. Bíró

Support: Hungarian OTKA grant K135515, 2019-2.1.11-TÉT-2019-00078, Wigner Scientific Computing Laboratory
Refs: J.Phys.G 47 (2020) 10, 105002, J. Phys. G50 (2023) 9,095004

## QGP - the matter of the early Universe



## QGP - the matter of the early Universe



Which one is the "closest" to the early Universe?

## A) PbPb collision


C) Abstain (now)


## QGP - the matter of the early Universe



Which one is the "closest" to the early Universe?
A) PbPb collision

C) Cup of coffee

G.G. Barnafoldi: Zimányi School 2023
B) pp collision


## Outline

## 1) Earlier studies

- What is UE? Why is this important for in HEP?
$\rightarrow$ theory, experiment, measures

2) New developments on UE

- Angular properties measures
$\rightarrow$ multiplicity, $\mathrm{p}_{\mathrm{T}}$ spectra, parameter derivatives
$\rightarrow$ Tsallis thermometer

3) Comparison to event shape variable

- Spherocity measures and cross check

4) Collision energy dependence
$\rightarrow$ Can we quantify the UE definition?


## UE

## Anatomy of a proton-proton event



## So what Uderlying Event is?

## - Theoretical point:

- Mainly non-perturbative QCD effect
$\rightarrow$ Initial \& final state radiation
$\rightarrow$ Multiple parton interaction
$\rightarrow$ Color Reconnection (CR)
$\rightarrow$ intrinsic $\mathrm{k}_{\mathrm{T}}$
$\rightarrow$ Hadronization



## So what Uderlying Event is?

## - Theoretical point:

- Mainly non-perturbative QCD effect
$\rightarrow$ Initial \& final state radiation
$\rightarrow$ Multiple parton interaction
$\rightarrow$ Color Reconnection (CR)
$\rightarrow$ intrinsic $\mathrm{k}_{\mathrm{T}}$
$\rightarrow$ Hadronization
- Experimental point

- Pedestal-like effects
$\rightarrow$ Activity in the event over MB
$\rightarrow$ Beam remnants (pile up)
$\rightarrow$ Trigger bias (jet criterion)



## Earlier studies, motivation

## Geometrical structure of an event



## Geometrical structure of an event


G.G. Barnafoldi: Zimányi School 2023

## How to separate jet \& UE?

- Jet finding \& elimination:
- Surrounding Band (SB method), Find a jet, THEN define SBs
- IF $\mathrm{SB}_{1}$ and $\mathrm{SB}_{2}$ are equal, THEN eliminate the jet
$\rightarrow$ expensive (high statistics)
$\rightarrow$ sensitive to cuts
- Correlation \& background
- Traditional method by CDF
$\rightarrow$ burte force
$\rightarrow$ geometry info only


CDF UE
SB-based UE
See: BGG et al: J.Phys.Conf.Ser. 270 (2011) 012017,AIP Conf.Proc. 1348 (2011) 124, EPJ Web Conf. 13 (2011) 04006 G.G. Barnafoldi: Zimányi School 2023

# New development to understand UE 

## The simulated data

## - PYTHIA_v8240 Monash 2013 tune

- 1 billion non-diffractive collisions of pp
- C.m. energy: $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$
- Includes $2 \rightarrow 2$ hard scattering process, followed by initial and final state parton showering, multiparton interactions, and the final hadronization process.
- The events having at least three primary charged particle with transverse
- Min. momentum: $\mathrm{p}_{\mathrm{T}}>0.15 \mathrm{GeV} / \mathrm{c}$

- Pseudorapidity: $|\mathrm{n}|<0.8$
- UE: Color Reconnection (CR, Multiple Parton Interaction (MPI)


## Angular structure of an event



Standard CDF definition

## Angular structure of an event



Standard CDF definition

# Sliding angle, cake slices 

## Sliding angle, cake slices

- We make slices of the $\Delta \varphi$ of size $20^{\circ}$. In this case, the results for the first bin 0 to $20^{\circ}$. are
 reported in two ways: including and excluding the leading particle in the result. Case II is a tool for exploring the geometrical structure of the Underlying Event.


## Multiplicity/MB

- PYTHIA multiplicity with sliding angle
- PYTHIAs model UE: CR \& MPI
- Good fits with the parametrizations
- More multiplicity az NS
- TS \& AS are mainly flat
- With leading particle deviation is increased



## Multiplicity/MB

- PYTHIA multiplicity with sliding angle
- PYTHIAs model UE: CR \& MPI
- Good fits with the parametrizations
- More multiplicity az NS
- TS \& AS are mainly flat
- With leading particle deviation is increased



## The $\mathrm{p}_{\mathrm{T}}$ spectrum

- PYTHIA spectra with sliding angle
- PYTHIAs model UE: CR \& MPI
- Good fits with the parametrizations
- Low $\mathrm{P}_{\mathrm{T}}$ is constant ( T )
- High $p_{T}$ varies (q)
- NS/AS are similar
- Need to consider w/o leading particle




## The $\mathrm{p}_{\mathrm{T}}$ spectrum

- PYTHIA spectra with sliding angle
- PYTHIAs model UE: CR \& MPI
- Good fits with the parametrizations
- Low $\mathrm{p}_{\mathrm{T}}$ is constant ( T )
- High $p_{T}$ varies (q)
- NS/AS are similar
- Need to consider w/o leading particle



## How to quantify \& compare these?

## - Precise spectra description

- from low- to high- $\mathrm{p}_{T}$

$$
f\left(m_{T}\right)=A \cdot\left[1+\frac{q-1}{T_{s}}\left(m_{T}-m\right)\right]^{-\frac{1}{q-1}}
$$

- in multiplicity classes (pp, pA, AA)

$$
\left.\frac{\mathrm{dN}_{\mathrm{ch}}}{\mathrm{dy}}\right|_{u=0}=2 \pi A T_{s}\left[\frac{(2-q) m^{2}+2 m T_{s}+2 T_{s}^{2}}{(2-q)(3-2 q)}\right] \times\left[1+\frac{q-1}{T_{s}} m\right]^{-\frac{1}{q-1}}
$$

- With PID:

$$
\pi^{ \pm}, K^{ \pm}, K_{s}^{\mathrm{O}}, K^{* \mathrm{O}}, p(\bar{p}), \Phi, \Lambda, \Xi^{ \pm}, \Sigma^{ \pm}, \Xi^{\mathrm{O}}, \Omega
$$

- Wide range:

|  | $\rho P$ | $\rho A$ | $A A$ |
| :--- | :--- | :--- | :--- |
| CM energy (GeV) | 7000,13000 | 5020 | $130-5020$ |
| Multiplicity range | $2.2-25.7$ | $4.3-45$ | $13.4-2047$ |

## How to quantify \& compare these?

- QCD-inherited scaling properties

$$
f\left(m_{T}\right)=A \cdot\left[1+\frac{q-1}{T_{s}}\left(m_{T}-m\right)\right]^{-\frac{1}{q-1}}
$$

- Parameter scaling with $\sqrt{ }$ \& multiplicity

$$
\begin{aligned}
& \mathrm{A}\left(\sqrt{s_{N N}},\left\langle N_{c h} / \eta\right\rangle, m\right)=A_{0}+A_{1} \ln \frac{\sqrt{s_{N N}}}{m}+A_{2}\left\langle N_{c h} / \eta\right\rangle \\
& \mathrm{T}\left(\sqrt{s_{N N}},\left\langle N_{c h} / \eta\right\rangle, m\right)=T_{0}+T_{1} \ln \frac{\sqrt{s_{N N}}}{m}+T_{2} \ln \ln \left\langle N_{c h} / \eta\right\rangle, \\
& \mathrm{q}\left(\sqrt{s_{N N}},\left\langle N_{c h} / \eta\right\rangle, m\right)=q_{0}+q_{1} \ln \frac{\sqrt{s_{N N}}}{m}+q_{2} \ln \ln \left\langle N_{c h} / \eta\right\rangle,
\end{aligned}
$$

- Details:
G. Biró et al: J.Phys.G 47 (2020) 10, 105002
A. Ortiz: Phys.Rev.D 104 (2021) 076019



## How to quantify \& compare these?

- QCD-inherited scaling properties

$$
f\left(m_{T}\right)=A \cdot\left[1+\frac{\frac{q-1}{\sqrt{T_{s}}}}{}\left(m_{T}-m\right)\right] \frac{-\frac{1}{q-1}}{}
$$

- Parameter scaling with $\sqrt{ } \mathrm{s}$ \& multiplicity

$$
\begin{aligned}
& \mathrm{A}\left(\sqrt{s_{N N}},\left\langle N_{c h} / \eta\right\rangle, m\right)=A_{0}+A_{1} \ln \frac{\sqrt{s_{N N}}}{m}+A_{2}\left\langle N_{c h} / \eta\right\rangle \\
& \mathrm{T}\left(\sqrt{s_{N N}},\left\langle N_{c h} / \eta\right\rangle, m\right)=T_{0}+T_{1} \ln \frac{\sqrt{ } s_{N N}}{m}+T_{2} \ln \ln \left\langle N_{c h} / \eta\right\rangle
\end{aligned}
$$

- Thermodynamical consistency

$$
\begin{aligned}
& \mathrm{P}=\mathrm{g} \int \frac{d^{3} p}{(2 \pi)^{3}} T f, \quad \mathrm{~N}=\mathrm{nV}=\mathrm{gV} \int \frac{d^{3} p}{(2 \pi)^{3}} f^{q}, \\
& \mathrm{~s}=\mathrm{g} \int \frac{d^{3} p}{(2 \pi)^{3}}\left[\frac{E-\mu}{T} f^{q}+f\right], \varepsilon=g \int \frac{d^{3} p}{(2 \pi)^{3}} E f
\end{aligned}
$$



## Tsallis fit parameters

## - PYTHIA spectra with

## sliding angle

- PYTHIAs model UE: CR \& MPI
- Good fits with the parametrizations (red line)
- NS $\rightarrow$ highest T
- NS/AS $\rightarrow$ highest q
- TS $\rightarrow$ constant q, T
- Multiplicity ~A






## On the Tsallis-thermometer

- Sliding angle
- Need UE in PYTHIA $\rightarrow$ CR \& MPI
- NS (with leading) is fully different highest T \& highest q
- Beyond NS T is getting constant $\rightarrow$ Wider range of UE, than in CDF




## On the Tsallis-thermometer

- Sliding angle
- Need UE in PYTHIA $\rightarrow$ CR \& MPI
- NS (with leading) is fully different highest T \& highest q
- Beyond NS T is getting constant $\rightarrow$ Wider range of UE, than in CDF




## On the Tsallis-thermometer

- Sliding angle
- Need UE in PYTHIA $\rightarrow$ CR \& MPI
- NS (with leading) is fully different highest T \& highest q
- Beyond NS T is getting constant $\rightarrow$ Wider range of UE, than in CDF



## Cross-check with event shape variable

## How to quantify \& compare events?

- Transverse spherocity:

$$
S_{0}=\frac{\pi^{2}}{4}\left(\frac{\sum_{i}\left|{\overrightarrow{p_{\mathrm{T}}^{i}}} \times \hat{\mathbf{n}}\right|}{\sum_{i} p_{\mathrm{T}_{i}}}\right)^{2}
$$

- Thrust:

$$
T_{\min } \equiv \frac{\sum_{i}\left|\vec{p}_{\mathrm{T}, i} \cdot \hat{\boldsymbol{n}}_{\boldsymbol{m}}\right|}{\sum_{i} p_{\mathrm{T}, i}}
$$

$\rightarrow$ NO need for jet finding

$\rightarrow$ Momentum \& geometry infos
G. Bencédi et al: Phys.Rev.D 104 (2021) 076019

## Event shape variable: spherocity

Simple 2-component model

- Isotrope: flat low $p_{T}$ distribution
- Jet: flat high $p_{T}$ distribution




## Event shape variable: spherocity

Simple 2-component model

- Isotrope: flat low $p_{T}$ distribution
- Jet: flat high $p_{T}$ distribution



## Event shape variable: spherocity

Simple 2-component model

- Isotrope: flat low $\mathrm{p}_{\mathrm{T}}$ distribution
- Jet: flat high $\mathrm{p}_{\mathrm{T}}$ distribution


Spherosity definition

$$
S_{0}=\frac{\pi^{2}}{4}\left(\frac{\Sigma_{i}\left|\vec{p}_{T_{i}} \times \hat{n}\right|}{\Sigma_{i} p_{T_{i}}}\right)^{2}
$$


$\rightarrow$ Event selection based on spherocity classes is available in ALICE

## Event shape variable: spherocity

Simple 2-component model
Spherosity definition

- Isotrope: flat low $\mathrm{p}_{\mathrm{T}}$ distribution
- Jet: flat high $p_{T}$ distribution

$\rightarrow$ Event selection based on spherocity classes is available in ALICE


## Spherocity vs. Tsallis termometer

- Spherocity relative to the MB defines wider UE

$\rightarrow$ CDF-based UE [40,140]



## Spherocity vs. Tsallis termometer

- Spherocity relative to the MB defines wider UE

$\rightarrow$ CDF-based UE [40,140]



## Spherocity vs. Tsallis termometer

- Spherocity relative to the MB defines wider UE


$\rightarrow$ Wider range of UE [40,140], than in CDF $[60,120]$


## Spherocity vs. Tsallis termometer

- Spherocity relative to the MB defines wider UE
- Tsallis-thermometer presents the same

$\rightarrow$ Wider range of UE [40,140], than in CDF $[60,120]$


## Spherocity vs. Tsallis termometer

- Spherocity relative to the MB defines wider UE
- Tsallis-thermometer presents the same



## Parameters in spherocity classes

## - PYTHIA spectra with

sliding angle in $\mathbf{S}_{\mathbf{0}}$ classes

- The more jetty the event, the angular variation is stronger.
- Minimal activity (lowest q \& T values are in the isotropic case.





$\rightarrow$ Isotropic events are closer to UE, activity is more than MB


## Dependence on c.m. energy

## Multiplicity scaling from RHIC to LHC

- PYTHIA spectra with sliding angle from RHIC to LHC
- Multiplicity goes with the logarithm of the c.m. energy




## Multiplicity scaling from RHIC to LHC

- PYTHIA spectra with sliding angle from RHIC to LHC
- Multiplicity goes with the logarithm of the c.m. energy




## Tsallis-thermometer from RHIC to LHC

- PYTHIA spectra with sliding angle from RHIC to LHC
- Multiplicity goes with the logarithm of the c.m. energy
- Leading particle line is the outlier
- The structure of the curve is stable


- $\rightarrow$ Nice c.m. energy scaling trends


## Tsallis-thermometer from RHIC to LHC

- PYTHIA spectra with sliding angle from RHIC to LHC
- Multiplicity goes with the logarithm of the c.m. energy
- Leading particle line is the outlier
- The structure of the curve is stable


- $\rightarrow$ Nice c.m. energy scaling trends


## Tsallis-thermometer from RHIC to LHC

- PYTHIA spectra with sliding angle from RHIC to LHC
- Multiplicity goes with the logarithm of the c.m. energy
- Leading particle line is the outlier
- The structure of the curve is stable


- $\rightarrow$ Nice c.m. energy scaling trends


## Tsallis-thermometer from RHIC to LHC

- PYTHIA spectra with sliding angle from RHIC to LHC
- Multiplicity goes with the logarithm of the c.m. energy
- Leading particle line is the outlier
- The structure of the curve is stable


- $\rightarrow$ Nice c.m. energy scaling trends


## Tsallis-thermometer from RHIC to LHC

- PYTHIA spectra with sliding angle from RHIC to LHC
- Multiplicity goes with the logarithm of the c.m. energy
- Leading particle line is the outlier
- The structure of the curve is stable


- $\rightarrow$ Nice c.m. energy scaling trends


## Tsallis-thermometer from RHIC to BB

- PYTHIA spectra with sliding angle from RHIC to LHC
- Multiplicity goes with the logarithm of the c.m. energy
- Leading particle line is the outlier
- The structure of the curve is stable

$\rightarrow$ Nice c.m. energy scaling trends even further?


## Tsallis-thermometer from RHIC to BB

- PYTHIA spectra with sliding angle from RHIC to LHC
- Multiplicity goes with the logarithm of the c.m. energy
- Leading particle line is the outlier
- The structure of the curve is stable

$\rightarrow$ Nice c.m. energy scaling trends even further?


## Conclusions

- Could we understand UE?
- Not yet, but getting closer by quantifying them
$\rightarrow$ Model UE: PYTHIA (CR, MPI), HIJING (minijet)
$\rightarrow$ UE properties has been charaterized
$\rightarrow$ Tsallis-Pareto fits well in narrow slices
- To take away...
- Tsallis-thermometer present wider UE In degrees CDF: $[60,120] \rightarrow[40,140]$
- Event shape classification support the model
- Scales with c.m. energy well
$\rightarrow$ UE has been quantified, next step...
Measure \& investigate in pA or AA?

- In degres CDF: [60,120] $\rightarrow$ [40,140]


## So, again....



Which one is the "closest" to the early Universe?

## A) PbPb collision


C) Cup of coffee

G.G. Barnafoldi: Zimányi School 2023
B) pp collision


## Thank You!

## Tsallis-thermometer from RHIC to LHC

- PYTHIA spectra with sliding angle from RHIC to LHC
- Multiplicity goes with the logarithm of the c.m. energy
- Leading particle line is the outlier
- The structure of the curve is stable
- Spherocity is increasing, but the size of the effect is the same

- $\rightarrow$ Nice c.m. energy scaling trends, in spherocity as well


## Derivatives of the parameters

- PYTHIA spectra parameter derivatives with sliding angle
- PYTHIAs model UE: CR \& MPI
- TS (+AS) $\rightarrow$ constant T \& q

$$
\begin{array}{lll}
\frac{\delta T_{s}}{\delta(\Delta \phi)} \neq 0 \quad \& \frac{\delta q}{\delta(\Delta \phi)} \neq 0 & & \text { (for NS \& AS) } \\
\frac{\delta T_{s}}{\delta(\Delta \phi)} \approx 0 \quad \& \frac{\delta q}{\delta(\Delta \phi)} \approx 0 & & \text { (for TS) }
\end{array}
$$

- NS $\rightarrow$ highest T
- NS/AS $\rightarrow$ highest q
- Multiplicity $\sim A$







## Spherocity model with multiplicity









## Thermodynamical consistency?

Thermodynamical consistency: fulfilled up to a high degree

$$
\begin{aligned}
\mathrm{P} & =\mathrm{g} \int \frac{d^{3} p}{(2 \pi)^{3}} T f \\
\mathrm{~N} & =\mathrm{nV}=\mathrm{gV} \int \frac{d^{3} p}{(2 \pi)^{3}} f^{q}, \\
\mathrm{~s} & =\mathrm{g} \int \frac{d^{3} p}{(2 \pi)^{3}}\left[\frac{E-\mu}{T} f^{q}+f\right], \\
\varepsilon & =g \int \frac{d^{3} p}{(2 \pi)^{3}} E f
\end{aligned}
$$




Compare EoS to data: Lattice QCD (parton) \& Biró-Jakovác parton-hadron



G.G. Barnafoldi: Zimányi School 2023

