Effect of clustered nuclear geometry to azimuthal anisotropy and flow fluctuations in O+O collisions at the LHC

N. Mallick, S. Pasad, R. Sahoo, G.G. Barnaföldi

Support: Hungarian OTKA grants, K135515, NEMZ_KI-2022-00031,

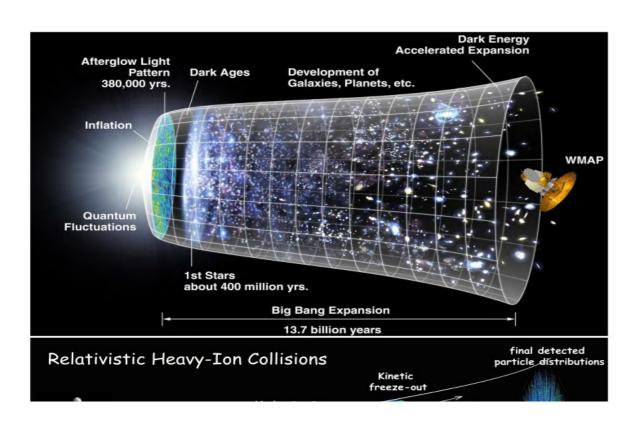
2024-1.2.5-TÉT-2024-00022, Wigner Scientific Computing Laboratory

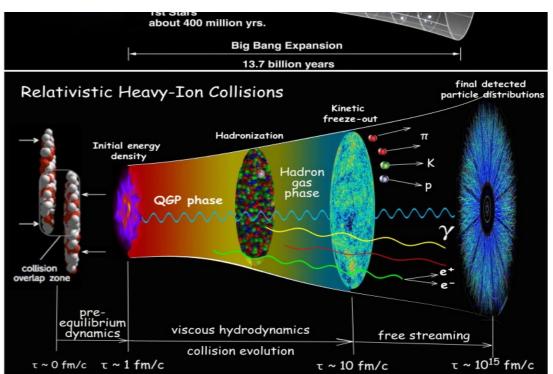
Ref.: arXiv:2407.15065 (Submitted to PLB)

Motivation & definitions

Primordial matter in heavy-ion collisions

Quark-Gluon Plasma (QGP) research

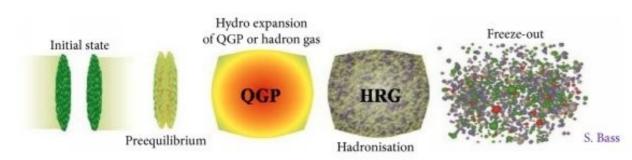


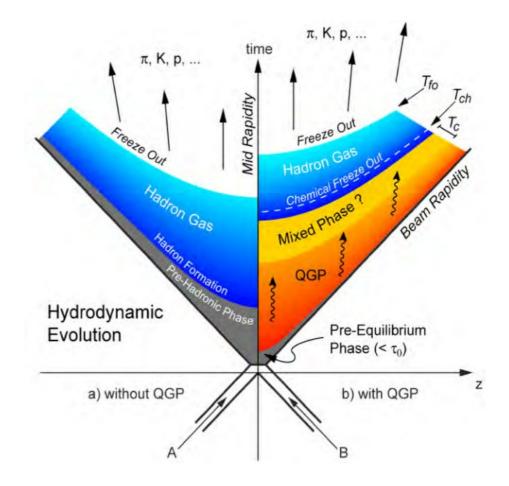


Primordial matter in heavy-ion collisions

QGP in experimental vs theory points

- By colliding heavy-ions we can form small drop of the hot & dense primordial matter
- No direct observations, just signatures: jet-quenching, correlations, collective effects, (anisotropic) flow...
- Need a complex description, including QCD phenomenology, hydrodynamics, (non-equilibrium) thermodynamics

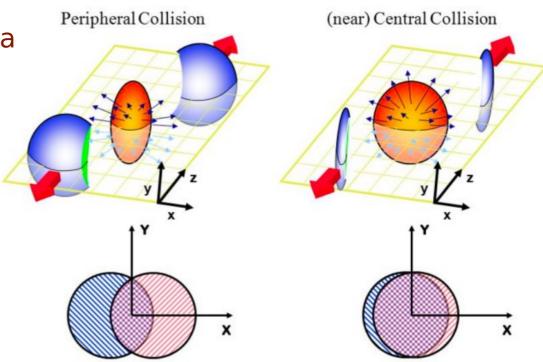




G.G. Barnafoldi: V4HEP#3 Prague 2024

Experimental point:

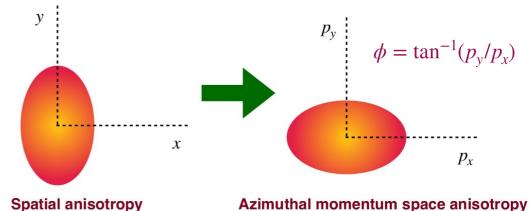
 Flow describes the azimuthal momentum space anisotropy of particle emission for a non-central heavy-ion collision.



Experimental point:

- Flow describes the azimuthal momentum space anisotropy of particle emission for a non-central heavy-ion collision.
- The nth harmonic coefficient of the Fourier expansion of azimuthal momentum distribution:

$$E\frac{d^{3}N}{dp^{3}} = \frac{d^{2}N}{p_{T}dp_{T}dy} \frac{1}{2\pi} \left(1 + 2\sum_{n=1}^{\infty} v_{n} \cos[n(\phi - \psi_{n})] \right)$$

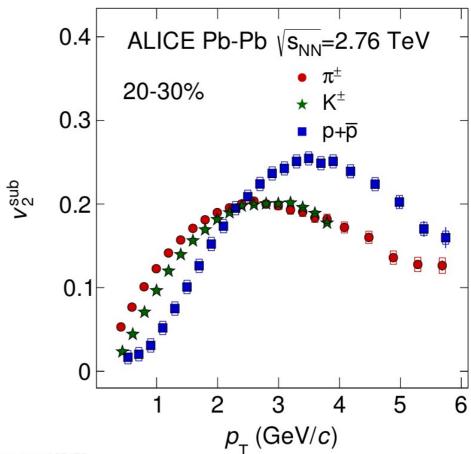


Experimental point:

- Flow describes the azimuthal momentum space anisotropy of particle emission for a non-central heavy-ion collision.
- The nth harmonic coefficient of the Fourier expansion of azimuthal momentum distribution:

$$E\frac{d^{3}N}{dp^{3}} = \frac{d^{2}N}{p_{T}dp_{T}dy} \frac{1}{2\pi} \left(1 + 2\sum_{n=1}^{\infty} v_{n} \cos[n(\phi - \psi_{n})] \right)$$

- The $v_2(p_T,y) = \langle \cos(2(\phi-\psi_2)) \rangle$ directly reflects the initial spatial anisotropy of the nuclear overlap region in the transverse plane.



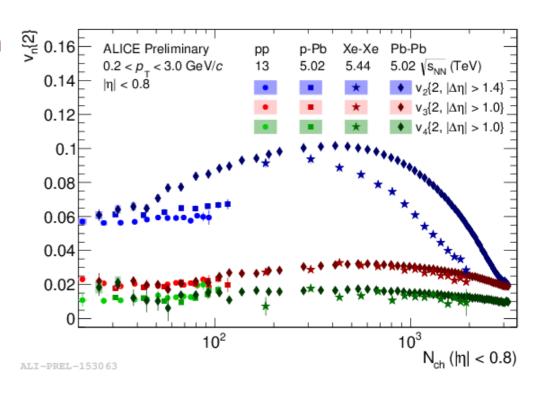
ALI-PUB-109472

Experimental point:

- Flow describes the azimuthal momentum space anisotropy of particle emission for a non-central heavy-ion collision.
- The nth harmonic coefficient of the Fourier expansion of azimuthal momentum distribution:

$$E\frac{d^{3}N}{dp^{3}} = \frac{d^{2}N}{p_{T}dp_{T}dy} \frac{1}{2\pi} \left(1 + 2\sum_{n=1}^{\infty} v_{n} \cos[n(\phi - \psi_{n})] \right)$$

- The $v_2(p_T,y) = \langle \cos(2(\phi-\psi_2)) \rangle$ directly reflects the initial spatial anisotropy of the nuclear overlap region in the transverse plane.
- Higher flow components can be measured



Future Nuclear Collisions at LHC

LHC Schedule with new nuclear collisions

Run 2: XeXe

- Run 3: pO & OO



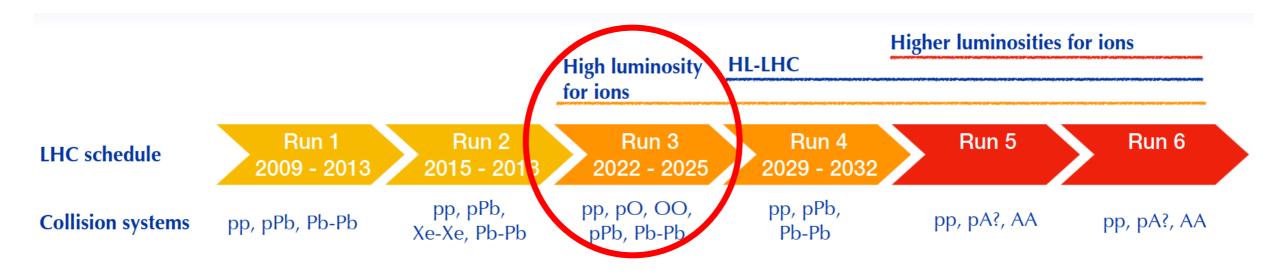
G.G. Barnafoldi: V4HEP#3 Prague 2024

Future Nuclear Collisions at LHC

LHC Schedule with new nuclear collisions

Run 2: XeXe

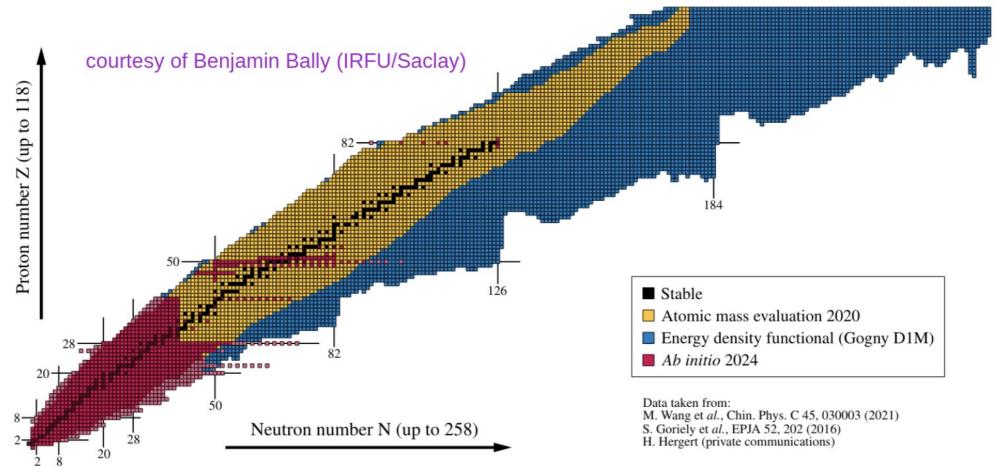
- Run 3: pO & OO



Nuclei & nuclear structure

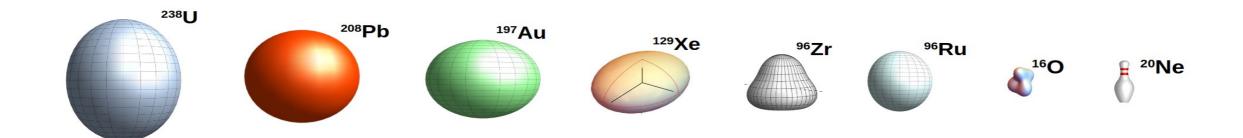
Nuclei for Future Nuclear Collisions

High-mass and deformed nuclei are in the focus:



Nuclei for Future Nuclear Collisions

- Experimental possibilities & interest
 - Large deformed nuclei: uranium, gold, xenon
 - Smaller zirconium, rubidium, oxygen, neon

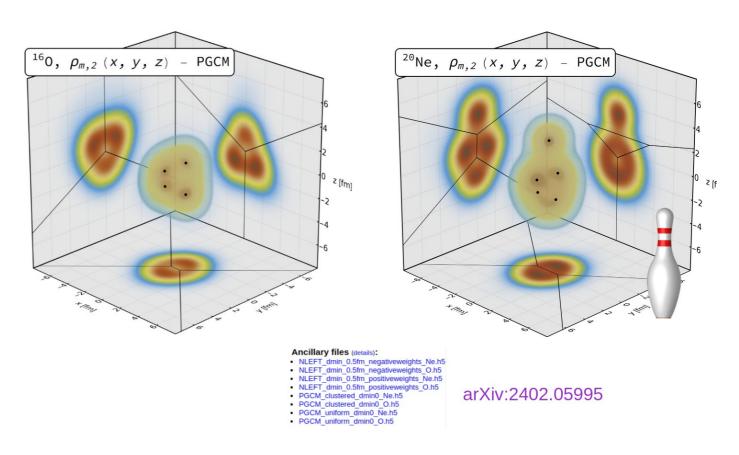


Nuclei for Future Nuclear Collisions

Oxygen and Neon are unique

 Oxygen is a double magic nucleus, since both shells are closed shell. In cluster model Tetrahedron shape.

 Neon, has bowling pin shape, even more complicated geometry



The shape of the oxygen

Modeling the oxygen

Woods-Saxon (WS)

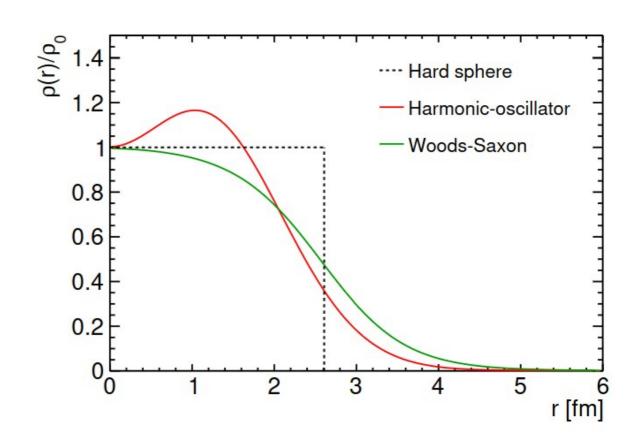
$$\rho(r) = \rho_0 \left[1 + \alpha \left(\frac{r}{a} \right)^2 \right] \exp \left(\frac{-r^2}{a^2} \right)$$

Harmonic oscillator (HO)

$$\rho(r) = \frac{\rho_0(1 + w(\frac{r}{r_0})^2)}{1 + \exp(\frac{r - r_0}{a})}$$

Normalization:

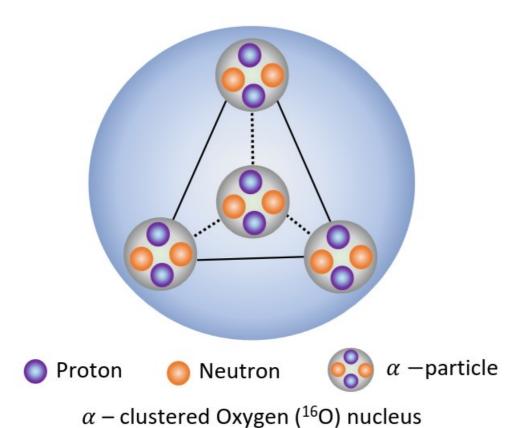
$$\int \rho(r)d^3r = 4\pi \int \rho(r)r^2dr = Ze$$



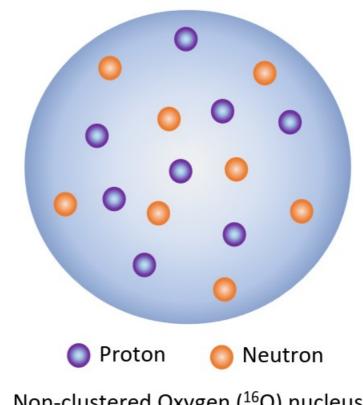
The shape of the oxygen

Nuclear structure description

- Cluster model vs.



Non-cluster model (Woods-Saxon)

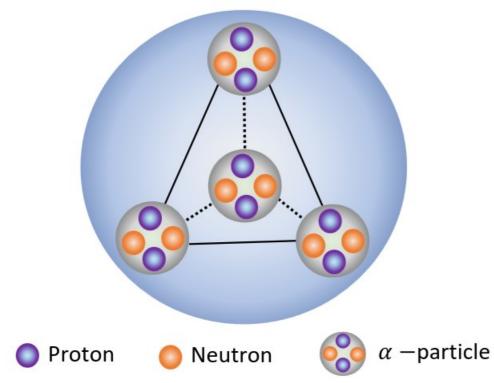


Non-clustered Oxygen (16O) nucleus

The shape of the oxygen

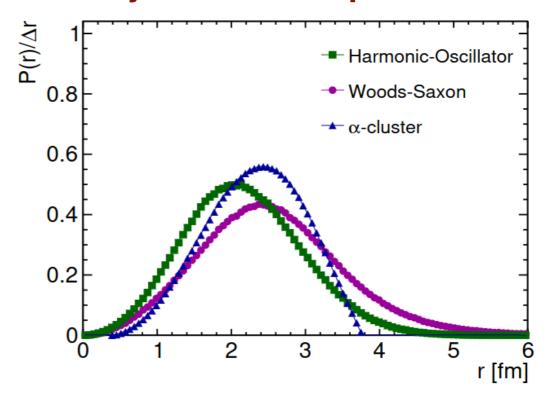
Nuclear structure description

Cluster model vs WS & HO



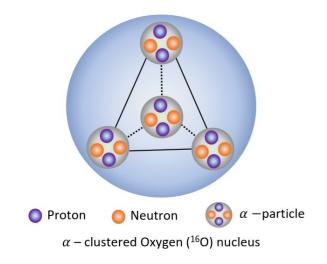
 α – clustered Oxygen (16 O) nucleus

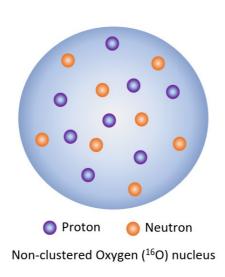
Probability of the radial position in O

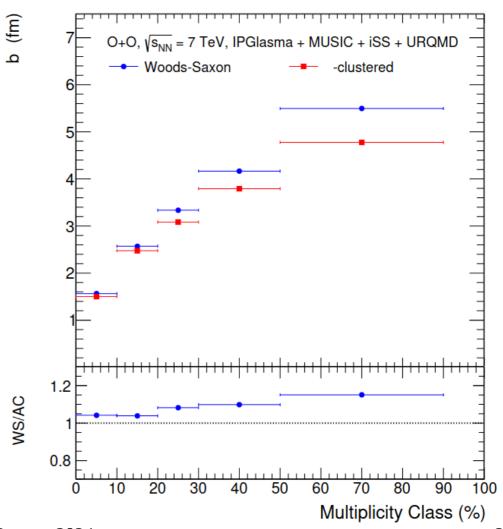


Nuclear structure description

Cluster model vs WS

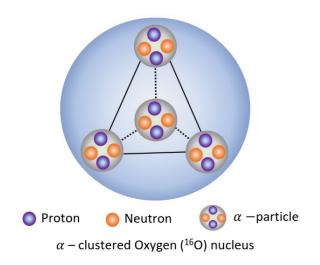


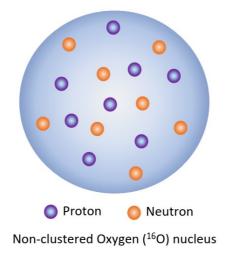


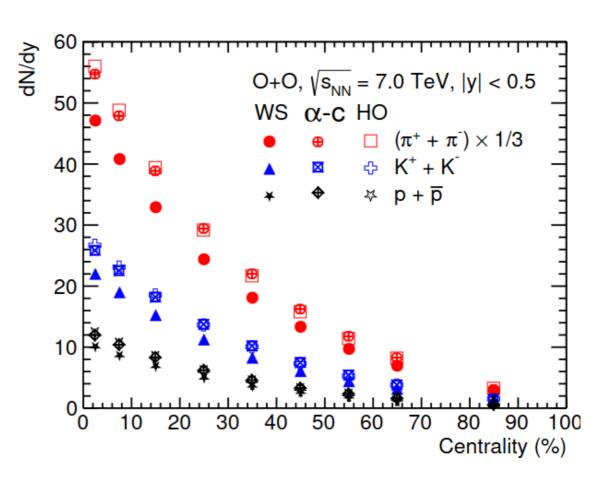


Nuclear structure description

Cluster model vs WS

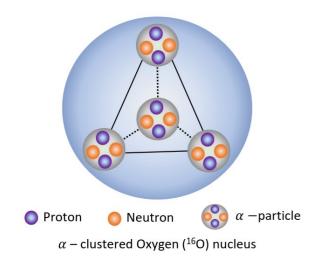


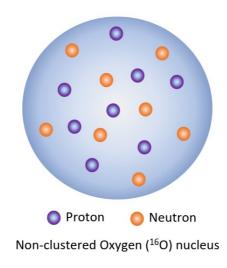


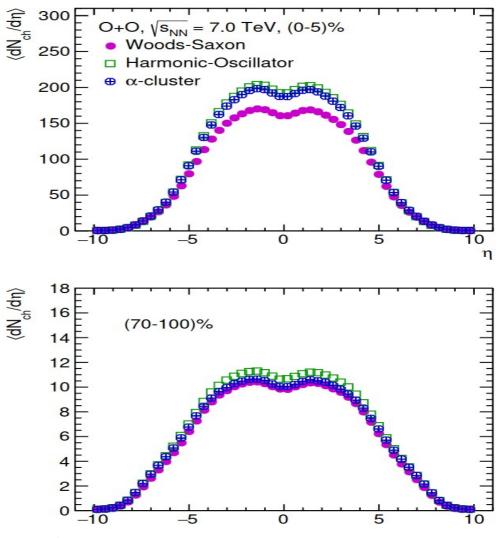


Nuclear structure description

Cluster model vs WS



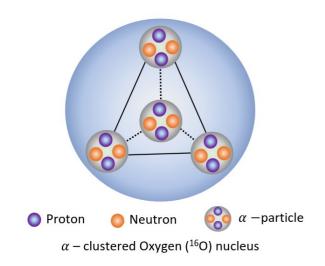


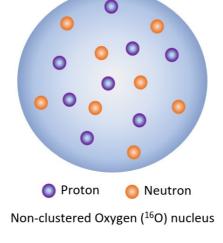


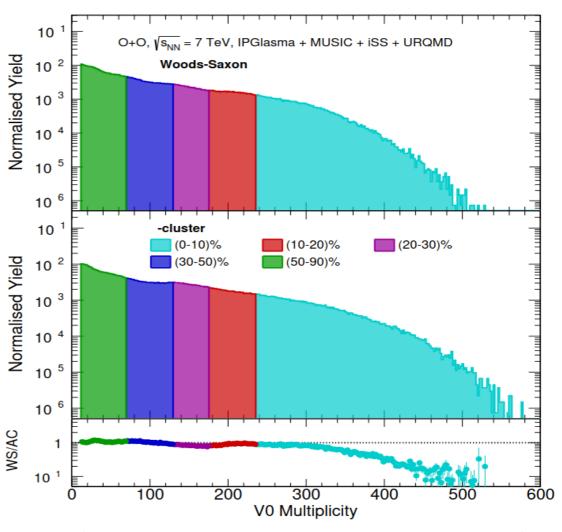
G.G. Barnafoldi: V4HEP#3 Prague 2024

Nuclear structure description

Cluster model vs WS







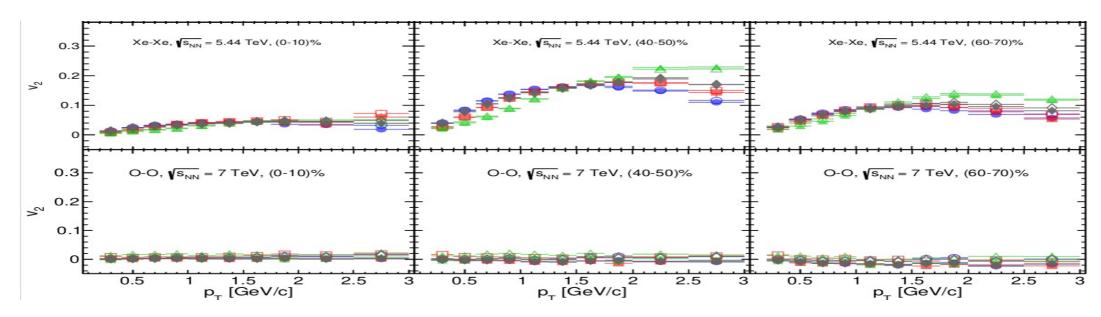
Calculating the flow in small systems

Calculating the flow

Event plane and average method

$$v_n = \langle \cos[n(\phi - \psi_n)] \rangle$$

 Need to determine the event plain, which fails for small nuclei:



The Model

A full hidro & Boltzmann transport with viscosity:

- IPGlasma
- $\langle 2 \rangle = \frac{|Q_n|^2 M}{M(M-1)},$

MUSIC

- iSS
- **URQMD**

 $\langle 4 \rangle = \frac{|Q_n|^4 + |Q_{2n}|^2 - 2 \cdot \text{Re}[Q_{2n}Q_n^*Q_n^*]}{M(M-1)(M-2)(M-3)} \qquad c_n\{2\} = \langle \langle 2 \rangle \rangle, \qquad v_n\{2\} = \sqrt{c_n\{2\}}, \\ c_n\{4\} = \langle \langle 4 \rangle \rangle - 2 \cdot \langle \langle 2 \rangle \rangle^2 \qquad v_n\{4\} = \sqrt[4]{-c_n\{4\}},$ $-2\frac{2(M-2)\cdot|Q_n|^2-M(M-3)}{M(M-1)(M-2)}$

$$c_n\{2\} = \langle \langle 2 \rangle \rangle,$$

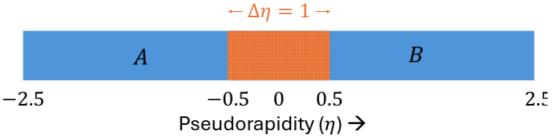
 $c_n\{4\} = \langle \langle 4 \rangle \rangle - 2 \cdot \langle \langle 2 \rangle \rangle^2$

$$v_n\{2\} = \sqrt{c_n\{2\}},$$

 $v_n\{4\} = \sqrt[4]{-c_n\{4\}}.$

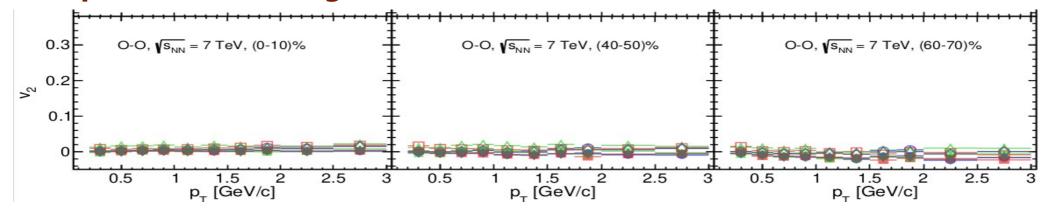
Kinematical settings are:

- Energy (c.m.): 7 TeV O+O
- Pseudorapidity: $|\eta| < 2.5$:
- Transverse momentum: $0.2 < p_{\mathrm{T}} < 5.0~\mathrm{GeV/c}$
- Pseudorapidity gap: $, |\Delta \eta| > 1.0$

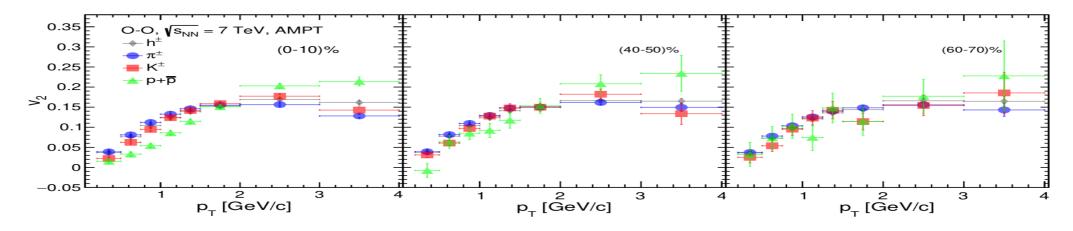


Calculating the flow

Event plane and average method

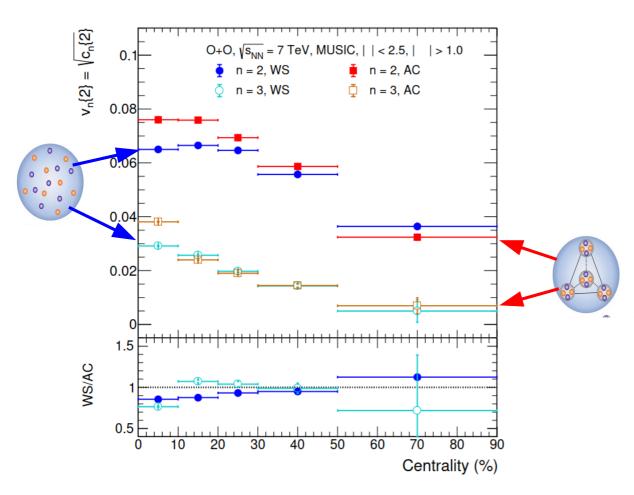


Multiparticle Q-cummulant method

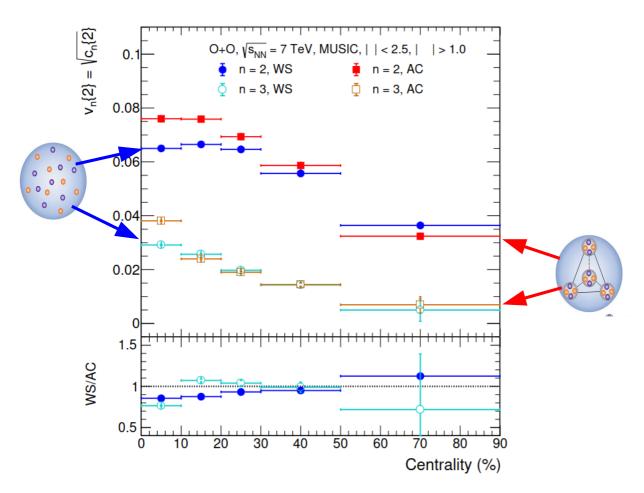


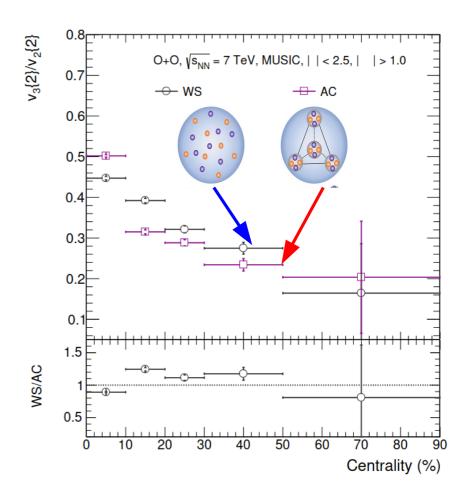
Flow in oxygen-oxygen (OO)

2-cumulants based calculation of $v_2 \& v_3$

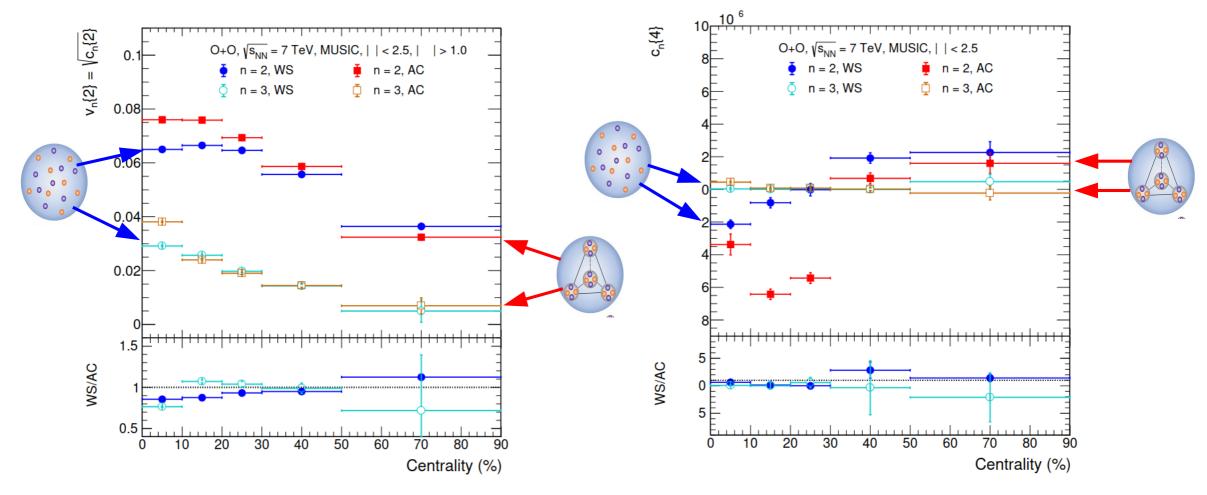


2-cumulants based calculation of v_2 & v_3

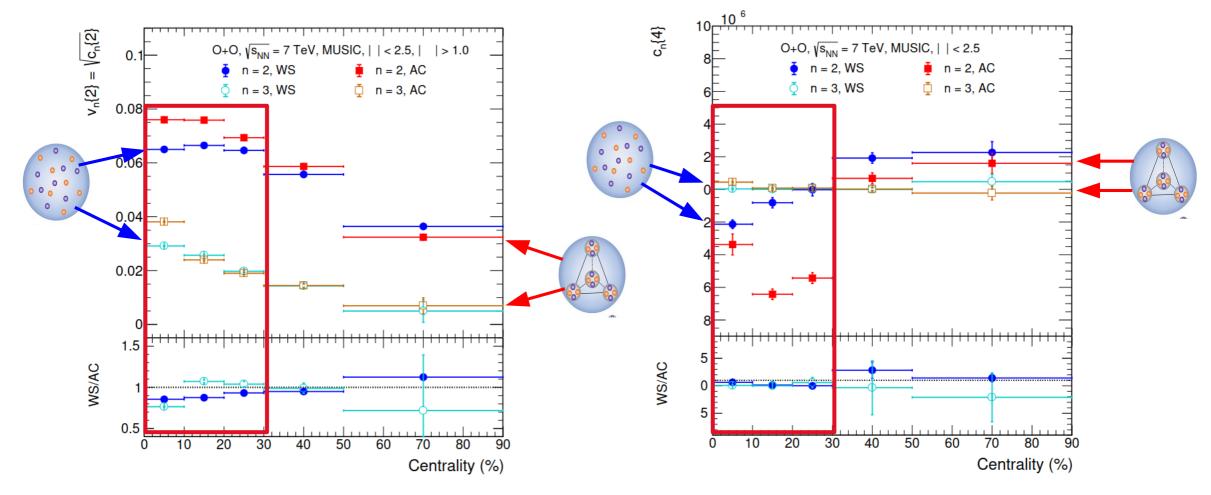




2- & 4-cummulants based v_n & c_n calculations

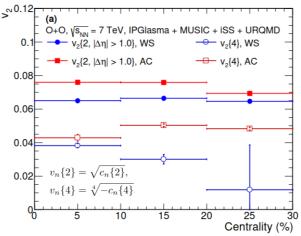


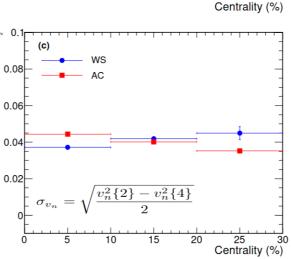
2- & 4-cummulants based v_n & c_n calculations

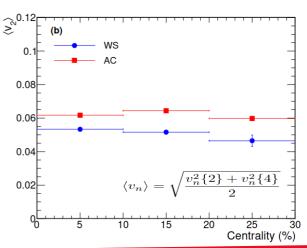


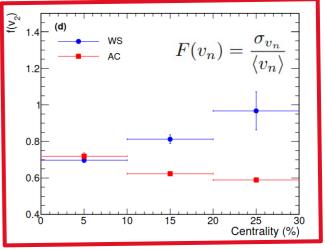
2- & 4-cummulants based calculations

- Flow and fluctuation measures changed significantly in the most central 0-30% regime
- Alpha-cluster has larger values,
 than Wood-Saxon profile
- Higher cummulants has higher effect at larger centrality
- Clearly visible on the relative measure: $F(v_n) = \frac{\sigma_{v_n}}{\langle v_n \rangle}$









Conclusions

- In a IPGlasma+MUSIC+iSS+URQMD = "realistic model"
 - It is possible to calculate the flow for small system like OO
 - → event plane method fails
 - → 2- & 4-cummulants can be calculated for v2
 - → v3 can not be calculated for 4-cummulant
 - → Need for a kinematical cut to reduce non-flow
- Nuclear structure has consequences on the flow
 - Nuclear structure matters in the calculations
 - → Alpha Cluster method is stronger than Woods-Saxon
 - → Relevant difference is in centra O+O collisions
 - → Comparable with the size of the alpha cluster

Thank You!

Can we prove the model' validity in heavy-ion collisions?

Calculating the flow

Event plane and average method

$$v_n = \langle \cos[n(\phi - \psi_n)] \rangle$$

Multiparticle Q-cummulant method

- Flow vector $Q_n = \sum_{j=1}^M e^{in\phi_j}$

- The 2- and 4-particle cummulants are:

$$\langle 2 \rangle = \frac{|Q_n|^2 - M}{M(M-1)},$$

$$\langle 4 \rangle = \frac{|Q_n|^4 + |Q_{2n}|^2 - 2 \cdot \text{Re}[Q_{2n}Q_n^*Q_n^*]}{M(M-1)(M-2)(M-3)} \qquad c_n\{2\} = \langle \langle 2 \rangle \rangle,$$

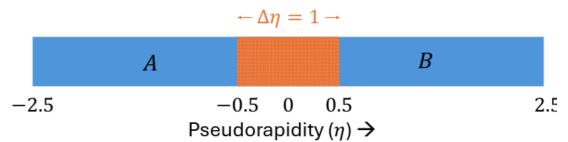
$$c_n\{4\} = \langle \langle 4 \rangle \rangle - 2 \cdot \langle \langle 2 \rangle \rangle^2 \qquad v_n\{4\} = \sqrt[4]{-c_n\{4\}}.$$

$$-2\frac{2(M-2) \cdot |Q_n|^2 - M(M-3)}{M(M-1)(M-2)},$$

Calculating the flow

Suppressing the non-flow contribution:

Kinematical cut: 2 sub-events, A&B are intoduced, with a rapidity gap:



$$\langle 2 \rangle_{\Delta \eta} = \frac{Q_n^A \cdot Q_n^{B*}}{M_A \cdot M_B}$$

$$v_n\{2, |\Delta \eta|\}(p_T) = \frac{d_n\{2, |\Delta \eta|\}}{\sqrt{c_n\{2, |\Delta \eta|\}}}$$

Differential flow cummulants:

$$d_{n}\{2\} = \langle \langle 2^{'} \rangle \rangle,$$

$$d_{n}\{4\} = \langle \langle 4^{'} \rangle \rangle - 2\langle \langle 2^{'} \rangle \rangle \langle \langle 2 \rangle \rangle$$

$$d_{n}\{2, |\Delta \eta|\} = \langle \langle 2^{'} \rangle \rangle_{\Delta \eta}$$

Mean and the fluctuations of the flow & ratio:

$$\langle v_n\rangle=\sqrt{\frac{v_n^2\{2\}+v_n^2\{4\}}{2}}$$

$$F(v_n)=\frac{\sigma_{v_n}}{\langle v_n\rangle}$$

$$\sigma_{v_n}=\sqrt{\frac{v_n^2\{2\}-v_n^2\{4\}}{2}}$$
 G.G. Barnafoldi: V4HEP#3 Prague 2024

2-cummulants based $v_n(p_T)$ calculations

