Constraints on the Size of Extra Compactified Dimensions from Compact Star Observations

Anna HorváthWigner Research Centre for PhysicsEötvös Loránd University

In collaboration with: *Gergely Gábor Barnaföldi Wigner Research Centre for Physics Emese Forgács-Dajka Eötvös Loránd University*

Dark Matter and Stars 2023

Support: NKFIH OTKA K135515

Constraints on the Size of Extra Compactified Dimensions from Compact Star Observations

- Remnants of supernovae
- Supported by baryon degeneracy
- Compact objects:
 - $R \sim 10 \text{km}$ $M \sim 1.1-2M_{\odot}$
- High density, low temperature

Probe physics in environments not available on Earth

Treatment in 1+3+1_c dimensions

- Assume one extra compactified spatial dimension with size $R_{\rm C}$
- At each point in ordinary 3D space particles with enough energy can move into it
 - 3D: particles with different masses
 - 3+1_cD: one particle but with different quantized momenta in the extra dimension

$$E_5 = \sqrt{\underline{k}^2 + \left(\frac{n}{R_c}\right)^2 + m^2} = \sqrt{\underline{k}^2 + \overline{m}^2}$$

• With the right choice of *R*_C the mass spectrum of particles could be reproduced Torres del Castillo, Gerardo. (2019). An introduction to the Kaluza-Klein formulation.

Treatment in 1+3+1_c dimensions

- Assume one extra compactified spatial dimension with size $R_{\rm C}$
- At each point in ordinary 3D space particles with enough energy can move into it
 - 3D: particles with **different masses**
 - 3+1_cD: one particle but with different quantized momenta in the extra dimension

$$E_{5} = \sqrt{\underline{k}^{2} + \left(\frac{n}{R_{c}}\right)^{2} + m^{2}} = \sqrt{\underline{k}^{2} + \overline{m}^{2}}$$

$$\overline{m}^{2} = \left(\frac{n}{R_{c}}\right)^{2} + m^{2}$$

• With the **right** choice of $R_{\rm C}$ the **mass spectrum** of particles could be **reproduced**

Building up stars

- Two equations needed:
 - Tolmann-Oppenheimer-Volkoff (TOV) \sim GR hydrostatic equation

$$\frac{\mathrm{d}p(r)}{\mathrm{d}r} = -\frac{GM(r)\varepsilon(r)}{r^2} \times \left[1 + \frac{p(r)}{\varepsilon(r)}\right] \left[1 + \frac{4\pi r^3 p(r)}{M(r)}\right] \left[1 - \frac{GM(r)}{r}\right]^{-1}$$

 $M(r) = \int_{0}^{r} \mathrm{d}r' 4\pi r'^{2} \varepsilon(r')$

- Equation of state (EoS) $\varepsilon(p)$
- Boundary conditions:
 - **Pressure at** the **surface** p(R) = 0(in practice $p(R) = p_{\min} = 10^{-5} \text{ km}^{-2}$)
 - Central energy density $\varepsilon_{\rm C}$

SLY2 + TNTYST 2.0 1.5 [M₀] ≥ 1.0 0.5 0.0 9.0 9.5 10.0 10.5 11.0 11.5 12.0 R [km]

static.

spherically

symmetric

EoS in 1+4D

- Interacting degenerate Fermi gas
- **Potential** is a **linear** function of density: $U(n) = \xi n$ $\xi = \text{const}$
- Thermodynamic potential on T=0 MeV

$$\widetilde{\Omega} = \frac{-2k_B T V_{(d)}}{h^d} \int \ln\left(1 + e^{\frac{\mu - E(\mathbf{p})}{k_B T}}\right) \mathrm{d}^d \mathbf{p}$$

• Extra dimension

Interaction

calculate with excited mass
 chemical potential shifted by -U(n)

$$\epsilon(\mu) = \epsilon_0(\mu - U(n)) + \epsilon_{int}$$
$$p(\mu) = p_0(\mu - U(n)) + p_{int}$$
$$n(\mu) = n_0(\mu - U(n))$$

$$\epsilon_{int} = p_{int} = \int U(n)dn = \int \xi n dn = \frac{1}{2}\xi n^2$$

J. Zimanyi, B. Lukacs, P. Levai, J.P. Bondorf: 6 "An Interpretable Family ofEquation of State for Dense Hadronic Matter", Nucl.Phys. A484 (1988) 647

Relativity in 1+4D

- Assume (for TOV):
 - Spherical symmetry
 - Time-independence
 - Isotropic relativistic ideal fluid
- Assume (for extra dimension):
 - Microscopic
 - 4D metric does not depend on g_{55}
 - Causality postulates hold
 - Full Killing symmetry

Equation of state

- ξ dependence is much more dominant than $r_{\rm c}$
- The bigger ξ , the less important r_c becomes

Equation of state

- ξ dependence is much more dominant than $r_{\rm c}$
- The **bigger** ξ , the **less important** r_c becomes
- For lower energies small ξ approximates more refined nuclear matter EoSs
- For high energies a large ξ is a better approximation

10

https://compose.obspm.fr/ 1. H. Togashi, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki and M. Takano, Nucl. Phys. A 961 (2017) 78 1. F. Gulminelli and Ad. R. Raduta, arXiv:1504.04493. 2. E. Chabanat, Ph.D. thesis, University Claude Bernard Lyon-1, Lyon, France, 1995. 3. P. Danielewicz et J. Lee, Nucl. Phys. A818, 36 (2009).

M-R diagrams of the EoS

- *ξ* dependence is much more dominant than *r*_c (latter only ~5%)
- The bigger ξ, the less important r_c becomes

M-R diagrams of the EoS

- *ξ* dependence is much more dominant than *r*_c (latter only ~5%)
- The bigger ξ, the less important r_c becomes

M-R diagrams

+ measurement data

+ 2 more refined EoSs

M. C. Miller et al 2021 ApJL 918 L28 H.T. Cromartie et al., Nat. Astron. 4, 72 (2019) J. Antoniadis et al., Science 340, 1233232 (2013)

M-R diagrams

+ measurement data

- + 2 more refined EoSs
- + approximation for ξ

M. C. Miller et al 2021 ApJL 918 L28 H.T. Cromartie et al., Nat. Astron. 4, 72 (2019) J. Antoniadis et al., Science 340, 1233232 (2013)

16

M-R diagrams

- + measurement data
- + 2 more refined EoSs
- + approximation for ξ

Change position of black curve by **setting** the **size of** the **extra dimension**.

M. C. Miller et al 2021 ApJL 918 L28 H.T. Cromartie et al., Nat. Astron. 4, 72 (2019) J. Antoniadis et al., Science 340, 1233232 (2013)

17

Summary

NICER

LIGO

- Model with the possibility of probing beyond standard model physics
- One extra spatial compactified dimension

Ordinary mass can be described as quantized 5thD momenta

- Effective nuclear field theory with **linear** repulsive **potential**
- It is **possible** to **build** compact stars with **realistic** properties
- Constraints on the size of possible extra dimensions could be given using more precise observational data 19

Equation of state

- ξ dependence is much more dominant than $r_{\rm c}$
- The bigger ξ , the less important r_c becomes
- For lower energies small ξ approximates more refined nuclear matter EoSs
- For high energies a large ξ is a better approximation

20

https://compose.obspm.fr/ 1. H. Togashi, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki and M. Takano, Nucl. Phys. A 961 (2017) 78 1. F. Gulminelli and Ad. R. Raduta, arXiv:1504.04493. 2. E. Chabanat, Ph.D. thesis, University Claude Bernard Lyon-1, Lyon, France, 1995. 3. P. Danielewicz et J. Lee, Nucl. Phys. A818, 36 (2009).