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Motivation: improve proton therapy

beam direction >

100%

@ Original idea by Wilson in 1946
@ Widespread in the last 20 years
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(12 proton beams)

@ More advantageous dose
distribution due to Bragg-peak
= less side effect
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Proton therapy and proton imaging
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Introduction: how Bergen pCT calorimeter works?
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Introduction: how Bergen pCT calorimeter works?
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Introduction: how Bergen pCT calorimeter works?

Energy deposit Remaining energy
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How much heat is generated in the sensitive area?

@ 4644 ALPIDEs x 300 #\%E ~ 1.4 kW heat generation
e ~ 300 x 300 x 200 mm?3 sensitive volume
o Allowed temperature: Tpax = 30°C

@ Allowed inhomogeneity in calorimeter part: AT = 5°C

Tracking layers.

Transition cards
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How to transfer heat away? =- Two cooling concepts

Water cooling Air cooling
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How to transfer heat away? =- Two cooling concepts

Water cooling Air cooling
@ Intensive water cooling @ Third type of boundary
= temperature at edge condition in surfaces, which
remains constant contact with the air flow
= All heat is transferred @ No heat transfer in the other
away through edge surfaces of the detector
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Calculations of water cooling

1D steady state Fourier equation:

9°T(x)
Ox2
where T(x): temperature , x: coordinate, L: length,

gy: volumetric heat generation and A: thermal conductivity
Boundary conditions, temperatures are Ty:

0= A

+ qv ’

T(0) = To and T(L) = To .

Integrable differential equation = Solution:

2
_ o av (L
T(X)— 2)\X +2)\ <2> +Tpo .
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Temperature distribution of water cooling

Temperature distribution in the layer
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Calculations of air cooling

Heat conduction
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The heat conduction in layer:

- )\azTC(X) _ Qc(x)

0
Ox2 V¢

+q0.

The temperature change of airflow:

0Ta(x)  Qc(x)
cv > - V.

p

oOr - -

rr+--

x  The convection between them:

Qc(x) = aA[Tc(x) = Ta(x)] -

Tc: layer temp. , T,: air temp. , Qc: heat transfer from layer to air, qg:
volumetric heat generation, V: layer volume, V;: air volume, A: contact
area, \: layer thermal conductivity, p: air density, c: specific heat capacity
of air, v: airspeed, a: heat transfer coefficient between layer and air.

13/19



Calculations of air cooling

Layer temperature:  T¢(x) = CypeX 4 Cpe* 4 C3x + C4 .

Air temperature: Ta(x) = %%TXC + ﬁqox-l- pcv

Cq1, Co, rq, rp, C3, C4 and ¢ are constants based on: «, A, L, p, c,
v, A, Vc and V;.

Boundary conditions:
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Calculations of air cooling

Heat transfer coefficient («) based on Tachibana and Fukuill:

0.45
A De mDe 0.8p.0.33
~—0.01711+23— 1- Re”°Pr™-
« DeOO ( +23 L)< K ) e r ,

where \: thermal conductivity, K: width of the gap, L: length of

the gap, d: thick of the gap, De = 4% ~ 2d: equivalent

diameter, Re: Reynolds number, Pr: Prandtl number.

Warning! Strong extrapolation: « was measured for turbulent
flows and we use them for laminar — upper estimates «

[1]: Fujio Tachibana and Sukeo Fukui, Convective Heat Transfer of the Rotational and
Axial Flow between Two Concentric Cylinders, Bulletin of JSME, 7(26):385-391, 1964.
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Temperature distribution of air cooling

Temperature distribution of layer and air
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Comparison of the two cooling strategy

e Water cooling: Tax = 23.2 °C and AT =3.2°C
e Air cooling: w =10 3 and a =73
Tmax = 36.3 °C and AT =28°C
@ Requirement 1: Thax < 30 °C, only water cooling meets

@ Requirement 2: AT < 5 °C, both concept meet
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Bergen pCT Collaboration is developing a proton CT

Data taking time: main limitation of available prototypes
= Goal: overcome this limitation

First test results expected within two years

We investigated two cooling system concepts

Water cooling met all requirements = under construction now

imeter layers

Tracking layers:
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Thank you for your
attention!
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