Understanding the Quark-Gluon Plasma with ALICE at the LHC

Marco van Leeuwen, Nikhef and CERN

Wigner 121 Symposium, 18-20 September 2023, Budapest

Particles and interactions

Atomic scale: electromagnetic interactions

Electrons, protons carry 1 unit of electric charge

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

Leptons (e, μ , \mathcal{T}) and photon are the fundamental particles of the electromagnetic interactions

Particles and interactions

Atomic scale: electromagnetic interactions

Electrons, protons carry 1 unit of electric charge

Quarks and gluons at the fundamental particles of the strong interaction **Dominant interaction on the subatomic scale (> MeV, < 1 fm)**

Standard Model: quantum field theory of fundamental particles

Leptons (e, μ , \mathcal{T}) and photon are the fundamental particles of the electromagnetic interactions

Experimental signatures of quarks and gluons: three-jet events

TASSO experiment @ PETRA @ DESY

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

ALEPH @ LEP (CERN)

The running coupling of QCD

High energy, short distances: quarks and gluons interact as quasi-free particles

At large distance, small energy: perturbative calculations do not converge Static QCD potential does not capture full dynamics

Understanding the interactions

Three regimes giving rise to subfields of physics:

	Electron
Free particles	
Bound states	Atomic
Many-body physics	Condens thermal, elect supercond

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

nagnetism

Strong interaction

Two-body scattering

c physics

Hadronic, nuclear physics

sed matter: trical properties, ductivity, etc

Heavy-ion physics: quark-gluon plasma

Heavy-ion collisions are used to study 'condensed matter physics' of QCD Unique form of 'quantum condensed matter'

Condensed matter of QCD: the quark-gluon plasma

Lattice QCD calculations: energy density vs temperature

Condensed matter of QCD: the quark-gluon plasma

Lattice QCD calculations: energy density vs temperature

High temperature: deconfined quark-gluon plasma

Phase transition at critical temperature $T_c \approx 155 \text{ MeV} \approx 10^{12} \text{ K}$

Condensed matter of QCD: the quark-gluon plasma

quarks and gluons confined in hadrons

Lattice QCD calculations: energy density vs temperature

deconfined quark-gluon plasma

Phase transition at critical temperature $T_c \approx 155 \text{ MeV} \approx 10^{12} \text{ K}$ Increase of number of degrees of freedom: hadrons (3 pions) \rightarrow quarks+gluons (37)

The Large Hadron Collider and ALICE

The Large Hadron Collider

LHC: most powerful particle accelerator-collider in the world pp collision: 13.6 TeV Pb-Pb collisions: 5.36 TeV per nucleon pair

A Large Ion Collider Experiment

ALICE: one of the four large LHC experiments Focus on strong interaction, heavy-ion collisions

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

Thousands of particles are produced in each lead ion collision - study momentum distributions, correlations, types of particles

Heavy ion collisions: Little Bangs

Time:0.08

Stages of the collision: initial stages — QGP/fluid stage — hadron formation (freeze out)

'Little Bang': recreate primordial matter in the laboratory

|--|

Heavy ion collisions: Little Bangs

Time:0.08

Stages of the collision: initial stages — QGP/fluid stage — hadron formation (freeze out)

'Little Bang': recreate primordial matter in the laboratory

|--|

Simulated event: location of nucleons

Simulated event: location of nucleons

Simulated event: location of nucleons

Simulated event: location of nucleons

Initial state spatial anisotropies ε_n are transferred into final state momentum anisotropies v_n by pressure gradients, flow of the Quark Gluon Plasma

Simulated event: location of nucleons

Initial state spatial anisotropies ε_n are transferred into final state momentum anisotropies v_n by pressure gradients, flow of the Quark Gluon Plasma

Azimuthal distribution single event

Simulated event: location of nucleons

Initial state spatial anisotropies ε_n are transferred into final state momentum anisotropies v_n by pressure gradients, flow of the Quark Gluon Plasma

Azimuthal distribution single event

Anisotropic flow: initial state and QGP expansion

Mass-dependence of v₂ measures flow velocity

Anisotropic flow: initial state and QGP expansion

Mass-dependence of v_2 measures flow velocity

Even heavy flavour hadrons flow !

Anisotropic flow: initial state and QGP expansion

ALI-PUB-151735

0

2

3

V3

Schenke and Jeon, Phys.Rev.Lett.106:042301

Schenke and Jeon, Phys.Rev.Lett.106:042301

Constraining initial state and plasma properties simultaneously: Bayesian inference

Experimental input: yields, mean p_T and harmonic flow vs p_T

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

J. E. Bernhard et al, arXiv: 1605.03954

Flow cumulants $v_n\{2\}$ Mean p_T [GeV] 0.09 $\bullet v_2$ $p\bar{p}$ 0.06 K^{\pm} • π^{\pm} 0.03 • v_3 $\bullet v_4$ 0.09 $\bullet v_2$ $p\bar{p}$ 0.06 K^{\pm} \pm 0.03 v_A 0.00705030 40 5060 4060 702030 100Centrality % Centrality %

Model: initial anisotropies + medium response

Explores a large parameter space to investigate reliability/robustness of the modeling

Bayesian analysis of flow: results

Flow data provide information on initial geometry and viscosity of the QGP at the same time

Viscosity vs T

J. E. Bernhard et al, arXiv: 1605.03954

A global fit to anisotropic flow: main result

QGP has a very small 'specific viscosity' small mean free path

Viscosity close to fundamental lower bound

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

J. E. Bernhard et al, Nature Physics 15, 1113–1117, arXiv: 1605.03954

Comparison to well-known liquids

 $\eta = \frac{1}{3} n \overline{p} \lambda$

Initial state geometry: event plane correlations

- New method: reduced sensitivity to numerical fluctuations
- No significant correlation between Ψ_2 and Ψ_3

ALICE, <u>arXiv:2302.01234</u>

New results more in line with expectations

Chemical freeze-out

Chemical freeze-out determines hadron yields — end of inelastic collisions

• Hadron yields follow thermal distribution with $T = T_c = 155$ MeV

$$N = (2J+1) e^{-m/T}$$

 Chemical freeze-out at phase transition temperature: *no inelastic collisions after phase transition*

Hadron yields compared to thermal model calculation

17

Elastic collisions in the hadronic phase: resonance yields

Re-scattering of decay daughters: signal loss **Regeneration:** resonances formed in hadron scattering

 ρ , K^{*}, A^{*} reduced yield: final state scattering of decay particles φ: longer life time, yield not affected

Light nuclei: a sensitive probe of the hadronic phase

Hadronic collisions at LHC produce light nuclei d, t, ³He, ⁴He etc

- Small binding energy O(MeV) << T of hadronic phase
- Expect large break-up probability

Formation by coalescence of protons and neutrons?

- Expect yield $\propto \rho_p \rho_n$
- Model calculations use Wigner function formalism

JUNE 1, 1932 PI

PHYSICAL REVIEW

On the Quantum Correction For Thermodynamic Equilibrium

By E. WIGNER Department of Physics, Princeton University (Received March 14, 1932)

The probability of a configuration is given in classical theory by the Boltzmann formula $\exp\left[-V/hT\right]$ where V is the potential energy of this configuration. For high temperatures this of course also holds in quantum theory. For lower temperatures, however, a correction term has to be introduced, which can be developed into a power series of h. The formula is developed for this correction by means of a probability function and the result discussed.

The Wigner function (quantum density matrix formalism)

By E. Wigner Department of Physics, Princeton University (Received March 14, 1932)

It does not seem to be easy to make explicit calculations with the form (4) of the mean value. One may resort therefore to the following method.

If a wave function $\psi(x_1 \cdots x_n)$ is given one may build the following expression²

$$P(x_{1}, \cdots, x_{n}; p_{1}, \cdots, p_{n}) = \left(\frac{1}{h\pi}\right)^{n} \int_{-\infty}^{\infty} \cdots \int dy_{1} \cdots dy_{n} \psi(x_{1} + y_{1} \cdots x_{n} + y_{n})^{*} \psi(x_{1} - y_{1} \cdots x_{n} - y_{n}) e^{2i(p_{1}y_{1} + \cdots + p_{n}y_{n})/h}$$
(5)

and call it the probability-function of the simultaneous values of $x_1 \cdot \cdot \cdot x_n$ for the coordinates and $p_1 \cdot \cdot \cdot p_n$ for the momenta. In (5), as throughout

- Explored for nuclei by e.g. R Scheibl, U Heinz \bullet
- Extended to parton coalescence by J Zimányi, P Lévai, T Csörgö, T S Biró, V Greco, C M Ko, R Fries, R Hwa, and others

On the Quantum Correction For Thermodynamic Equilibrium

Of course $P(x_1, \dots, x_n; p_1, \dots, p_n)$ cannot be really interpreted as the simultaneous probability for coordinates and momenta, as is clear from the fact, that it may take negative values. But of course this must not hinder the use of it in calculations as an auxiliary function which obeys many relations we would expect from such a probability. It should be noted, furthermore,

Coalescence models for nuclear collisions/QGP combine proximity conditions in coordinate and momentum space

Production of light nuclei: thermal model vs coalescence

----- CSM, $T_{ch} = 155 \text{ MeV}$, $V_c = 3 \text{ d}V/\text{d}y$ ----- CSM, $T_{ch}^{ch} = 155 \text{ MeV}$, $V_c = \text{d}V/\text{d}y$ + d) 0.005 Coalescence g 0.004 +<u>q</u> ALICE 0.003 | p–Pb, √<u>s_{NN}</u> = 8.16 TeV p–Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ Pb–Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ ٠ 0.002 Pb–Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ * pp, $\sqrt{s} = 5 \text{ TeV}$ \Diamond pp, $\sqrt{s} = 7 \text{ TeV}$ 0.001 pp, $\sqrt{s} = 13 \text{ TeV}$ pp, \sqrt{s} = 13 TeV, HM 10^{3} 10^{2} 10 $\langle dN_{ch}$ $\mathrm{d}\eta_{\mathrm{lab}} angle_{|\eta_{\mathrm{lab}}|<0.5}$ ALI-PUB-531759

deuteron/proton ratio

Thermal and coalescence calculations give similar result for compact states; clear differences for larger states

J/ψ : melting and regeneration at the parton level

ALI-PUB-539089

 $R_{AA} = \frac{dN/dp_T|_{AA}}{\langle N_{coll} \rangle \ dN/dp_T|_{pp}}$

Nuclear modification factor

J/ψ : bound state charm and anti-charm quark

Binding force screened when

 $r > \lambda_d$

J/ψ : melting and regeneration at the parton level

ALI-PUB-539089

$$R_{AA} = \frac{dN/dp_T|_{AA}}{\langle N_{coll} \rangle \ dN/dp_T|_{pp}}$$

Nuclear modification factor

J/ψ : bound state charm and anti-charm quark

Binding force screened when

$$r > \lambda_d$$

High p_T - low density: quarkonia dissociate in the QGP

J/ψ : melting and regeneration at the parton level

Nuclear modification factor

J/ψ : bound state charm and anti-charm quark

Binding force screened when

$$r > \lambda_a$$

High p_T - low density: quarkonia dissociate in the QGP

J/ψ production in Pb-Pb collisions: melting and recombination

$$R_{AA} = \frac{dN/dp_T|_{AA}}{\langle N_{coll} \rangle \ dN/dp_T|_{pp}}$$

- Balance between melting and recombination at low p_T \bullet
- Rapidity dependence exposes density dependence

Back to the earliest stages: direct photon production

Large background: decay photons from π^0 , η , ... \Rightarrow Challenging measurement

Main sources:

- High p_T: hard scattering; quark-gluon Compton process
- Low p_T: thermal radiation

Excess at low p_T: thermal photons

Direct photon excess: thermal production

Direct photon excess spectrum

Thermal emission visible for mid-central and central events

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

Spectral slope: apparent temperature

Apparent temperature larger at LHC than RHIC Absolute temperature depends on blue shift

The ALICE detector

A general purpose detector for heavy-ion physics

- Low material budget
- High-resolution tracking
 - Silicon tracker
 - Time projection chamber
- Particle identification
 - TPC *dE/dx*
 - Time of Flight
 - Ring-imaging Cherenkov (high p_T)
 - Muon ID (forward)
 - Transition radiation detector
- EM calorimeters

ALICE upgrades in Long Shutdown 2 (2019-2021) **New ITS and MFT**

Full pixel detector Improved spatial resolution

Fast Interaction Trigger

ALICE LS2 upgrade paper: <u>arXiv:2302.01238</u>

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

TPC: GEM readout

Run 3, 4: collect 13 nb⁻¹ Pb-Pb: 50x more minimum bias data; 10x more triggered data

Future upgrades: ITS 3 and FoCal

ITS 3: ultra-light, fully cylindrical tracking layers

Improved performance for

- Heavy flavour reconstruction
- **Di-lepton measurements**

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

FoCal: high-granularity forward calorimeter

High-granularity Si-W EM calorimeter for photons and π^0

- **Small-x physics** in pp and p-Pb
- Forward π^0 in Pb-Pb -

LHC Run 5 and 6: ALICE 3

- Compact all-silicon tracker
- muons, electrons, hadrons, photons

Di-lepton emission: virtual photons

- Virtual photons: e⁺e⁻ pairs lacksquare
- Cleaner signal:
 - $m_{ee} > 1 \text{ GeV}/c^2$ removes light flavour decay background
 - Remaining background: heavy flavour pairs
- Slope of mass spectrum not blue-shifted
- Vector meson spectral functions sensitive to chiral symmetry restoration

 π_0 decay background chiral symmetry and conductivity ρ -a₁ mixing

thermal emission, early times

Dielectrons: chiral symmetry and thermal emission

Run 3 and 4: first measurements of thermal dilepton emission at LHC

Dielectrons: chiral symmetry and thermal emission

Run 3 and 4: first measurements of thermal dilepton emission at LHC

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

High precision: access $\rho - a_1$ mixing

Dielectrons: chiral symmetry and thermal emission

Run 3 and 4: first measurements of thermal dilepton emission at LHC

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

High precision: access $\rho - a_1$ mixing

Excellent precision for dilepton v₂ p⊤ in different mass ranges → time evolution of emission

DD azimuthal correlations

- Angular decorrelation directly probes QGP scattering \bullet
 - Signal strongest at low p_T
- Very challenging measurement: \bullet need good purity, efficiency and η coverage \rightarrow heavy-ion measurement only possible with ALICE 3

DD azimuthal correlations

- Angular decorrelation directly probes QGP scattering \bullet
 - Signal strongest at low p_T
- Very challenging measurement: need good purity, efficiency and η coverage \rightarrow heavy-ion measurement only possible with ALICE 3

DD azimuthal correlations

- Angular decorrelation directly probes QGP scattering
 - Signal strongest at low p_T
- Very challenging measurement: need good purity, efficiency and η coverage
 → heavy-ion measurement only possible with ALICE 3

С

Strategic detector R&D for ALICE 3

- **Vertex tracker mechanics**
- Silicon tracking sensor development
 - Improve read-out speed, radiation hardness
 - Low-power for cooling, large scale application
 - Module integration
- Integrated timing sensor development
 - Goal: achieve monolithic timing sensors
 - Improve time resolution to 20 ps
 - Combine photon sensors and timing sensors?
- Muon detector development
 - Large area, low noise detectors \bullet

R&D for ALICE 3 is starting up Many exciting opportunities

First very thin LGAD prototypes produced by FBK

25 µm and 35 µm-thick FBK single channel

Area = 1x1 mm²

F Carnesecchi et al, arXiv:2202.04169

Summary

- ALICE studies the *condensed matter* of the strong interaction at high temperature: ulletthe Quark Gluon Plasma
- Key properties of the plasma are being determined from data: lacksquare
 - Shear viscosity: close to lower bound ullet
 - First constraints on bulk viscosity ullet
- Charm quarks move with the fluid expansion: rapid thermalisation \bullet
 - Beauty less so? \rightarrow Run 3 and 4 to improve precision
- Indicate short mean free path strong (residual) interactions \bullet
- Future directions \bullet
 - Measurement of initial temperature in reach for upcoming runs \bullet
 - Future upgrades to understand interactions, thermalisation \bullet

Thank you for your attention!

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

Probe beam

particles

Probe beam

particles

Not feasible: Short life time Small size (~10 fm)

Use self-generated probe: quarks, gluons from hard scattering large transverse momentum

Nuclear modification of p_T spectra

Charged particle p_T spectra

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

ALICE, PLB720, 52 CMS, EPJC, 72, 1945 ATLAS, arXiv:1504.04337

Nuclear modification of p_T spectra

Charged particle p_T spectra

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

ALICE, PLB720, 52 CMS, EPJC, 72, 1945 ATLAS, arXiv:1504.04337

Pb+Pb: clear suppression ($R_{AA} < 1$): parton energy loss

Nuclear modification of p_T spectra

Charged particle p_T spectra

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

ALICE, PLB720, 52 CMS, EPJC, 72, 1945 ATLAS, arXiv:1504.04337

Pb+Pb: clear suppression ($R_{AA} < 1$): parton energy loss

D mesons contain a charm quark m >> T, that is produced in an initial hard scattering

Nuclear modification factor

D mesons contain a charm quark m >> T, that is produced in an initial hard scattering

Nuclear modification factor

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

D mesons contain a charm quark m >> T, that is produced in an initial hard scattering

Nuclear modification factor

D mesons contain a charm quark m >> T, that is produced in an initial hard scattering

Nuclear modification factor

Azimuthal anisotropy: Full effect generated by interactions

Determining the transport coefficients

Heavy flavor transport coefficient: Bayesian fit

Diffusion coefficient *D*_s

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

Transport coefficient \hat{q}

Heavy-ion collisions as a laboratory for nuclear and hadron physics

Example: life time of strange baryons and nuclei

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

Hypernuclei life time

Thermalisation of heavy quarks

Thermalisation of heavy quarks

Multi-charm baryons: unique probe

- Large expected enhancement
- Theoretically clean: charm quarks conserved —

Messengers of the Plasma: soft and hard processes

Soft probes: particles produced by the QGP

Azimuthal anisotropy Light-flavour particle ratios Thermal radiation

Messengers of the Plasma: soft and hard processes

Soft probes: particles produced by the QGP

Azimuthal anisotropy Light-flavour particle ratios Thermal radiation

Heavy quarks charm and beauty:

- m >> T: Only produced in initial hard scattering
- Flavour conserved during evolution

Hard scattering products probe the QGP as they propagate out

Azimuthal anisotropy: two mechanisms

Hydrodynamical expansion

Conversion of pressure gradients into momentum space anisotropy

Dominant effect for late formation times: light flavour at low p_T

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

Parton energy loss

Anisotropy due to energy loss and path length differences

More energy loss along long axis than short axis

 $\Delta E_{med} \sim \alpha_S \hat{q} L^2$

Dominant effect for early formation times: heavy flavour, high p_T probes

Jets and parton showers

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

Jets and parton showers

Jets and parton showers

jet 1 esses jet 2 hadronisation: quarks, anti-quarks and gluons form hadrons

Yields, mean p_T

Particle/pion ratios

Yields 'scale' with multiplicity

Yield, mean p_T are convenient to summarise results, but a lot of physics enters

Mean p_T

Mean pt: disconnect between high-mult small systems and PbPb A multiplicity selection introduces more bias in small system

Flow of nuclei: coalescence vs thermal production

ALICE, arXiv:1910.09718

Λ_c production in pp and Pb-Pb

 Λ_c/D in pp

ALI-PREL-311156

Λ_c/D^0 in pp significantly larger than expected from e⁺e⁻

Λ_c production in pp and Pb-Pb

ALI-PREL-311156

ALI-PREL-323761

Λ_c/D^0 in pp significantly larger than expected from e⁺e⁻

New result: Λ_c in Pb-Pb; Λ_c/D similar or slightly larger than in pp

Λ_c/D in pp, Pb-Pb

Λ_c production in pp and Pb-Pb

ALI-PREL-311156

ALI-PREL-323761

Λ_c/D^0 in pp significantly larger than expected from e⁺e⁻

New result: Λ_c in Pb-Pb; Λ_c/D similar or slightly larger than in pp Does hadronisation by recombination play a role? Or 'just' fragmentation?

Production of light (anti-)nuclei

- Increased production in Pb-Pb collisions
- Two possible explanations:
 - Coalescence: density impacts coalescence rate
 - Thermal-statistical (CSM): baryon number conservation suppresses multi-baryon states in pp

- New results in pp, p-Pb collisions as a function of multiplicity \bullet
 - Smooth trend as a function of multiplicity \bullet
 - Data more in line with coalescence model

ALI-PUB-53307

Deuteron production in jets: increase of rate due to higher local density in line with coalescence model expectation

Hadron interactions: 3-particle correlations

- First direct study of 3-body potential ppK
- No evidence of true 3-body force; 2-body interactions fully explain correlation signal

Melting and regeneration of charmonia: $\psi(2S)$ vs J/ ψ

$$R_{AA} = \frac{dN/dp_T|_{AA}}{\langle N_{coll} \rangle \, dN/dp_T|_{pp}}$$

- High p_T: stronger suppression of $\psi(2S)$ lower melting temperature
- Low p_T: R_{AA} increases regeneration similar to J/ ψ \bullet

arXiv:2210.08893

ALICE upgrade plans for LS3 and LS4

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

Detector development: silicon pixel sensors

High-energy physics experiments bring together disciplines:

- detector development
- electronics
- computing
- cooling
- mechanics
- super-conducting magnet technology

Upgraded inner tracking system

Detector development: silicon pixel sensors

High-energy physics experiments bring together disciplines:

- detector development
- electronics
- computing
- cooling
- mechanics
- super-conducting magnet technology

ALICE has spearheaded the development and adoptation of monolithic active pixel sensors

DPTS test paper arXiv:2212.08621

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

Upgraded inner tracking system

Detector development: silicon pixel sensors

High-energy physics experiments bring together disciplines:

- detector development
- electronics
- computing
- cooling
- mechanics
- super-conducting magnet technology

ALICE has spearheaded the development and adoptation of monolithic active pixel sensors

DPTS test paper arXiv:2212.08621

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

Upgraded inner tracking system

Ultralight inner layers: improved pointing resolution

Multi-charm baryon detection

New technique: strangeness tracking

paryon provides high selectivity

$$\Xi_{cc}^{++} \to \Xi_c^+ + \pi^+ \qquad \Xi_c^+ \to \Xi^- + 2$$

 π^+

Multi-charm baryon detection

paryon provides high selectivity

$$\Xi_{cc}^{++} \to \Xi_c^+ + \pi^+ \qquad \Xi_c^+ \to \Xi^- + 2$$

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

 $2\pi^+$

Large enhancements: unique sensitivity to thermalisation and hadronisation dynamics

Unique access in Pb-Pb collisions with ALICE 3

Probing the gluon density in a hadron collider

Direct photon production

direct- γ , Compton (LO)

Sensitive to gluons at LO

Photon momentum directly related to incoming partons

Heavy hadron: also directly sensitive but fragmentation reduces kinematic constraint

More processes contribute, e.g. gluon splitting

Forward photons with FoCal

High granularity to reject decay background

High precision direct photon measurement down to low p_T

Constrain gluon density in nuclei over a broad range: $x \sim 10^{-5} - 10^{-2}$ at small Q²

Elliptic flow of quarkonia

 $J/\psi v_2$

 J/ψ melting is not directional; expect no or very little v₂ Recombination sensitive to v₂ of QGP -> Expect non-zero v₂ at low p_T

J/ψ v₂: new model calculation

PRL

Updated model: v₂ extends to larger p_T

Interactions of beauty quarks with the QGP: v₂

Prompt and non-prompt (from B decay) D⁰ v₂

ALI-PREL-502672

Open HF: smaller v₂ for beauty than charm

Suggests smaller interaction cross sections for beauty than charm — longer thermalisation time

Interactions of beauty quarks with the QGP: v₂

Prompt and non-prompt (from B decay) D⁰ v₂

ALI-PREL-502672

Open HF: smaller v_2 for beauty than charm

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

Suggests smaller interaction cross sections for beauty than charm — longer thermalisation time Light quark v_2 may contribute to open beauty v_2 , via recombination Uncertainties large — improve precision to conclude

Probing the QGP with jets at LHC

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

Very clear signals at high p_T: jets stand out above uncorrelated 'soft' background Interactions with QGP: energy loss, high-p_T suppression

Energy loss: di-jet asymmetry

Single event: p_T not balanced!

Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

pp: peak at 1 — balanced jets PbPb: shift towards lower values

Di-jet energy imbalance: jets lose energy as they propagate through the plasma

Experimental challenge: large combinatorial background in Pb-Pb

Haake and Loizides, PRC99, 064904

61

Jet-radius dependence of energy loss in Pb-Pb collisions

- Jet suppression increase with increasing R: wider jets lose more energy \bullet

Machine-learning based background subtraction enables jet measurements with R up to 0.6 at $p_T \sim 50$ GeV

Flow-like effects in pp and Pb-Pb: long range correlations

Flow-like effects in pp and Pb-Pb: long range correlations

Elliptic flow in p-Pb

Mass-dependence of v₂ measures flow velocity

Similar 'mass ordering' observed for v₂ from two-particle correlations in p+Pb

Is this pressure driven?

Flow effects in small systems

Many aspects of the observed ridge have a natural explanation in hydrodynamics:

- Long range correlation •
- 2- and 3-fold symmetries
- Dependence on initial geometry
- Many-particle correlations
- Particle mass dependence

Why would the system behave as a fluid? Is there enough time, volume to thermalise?

- Hydrodynamisation (isotropisation) of a dense gluon system?
- Partonic/hadronic rescattering?
- How many scatterings/what density is needed to approximate fluid behaviour?

Naive expectation: need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

1) System size: $R > \lambda$

Would not expect azimuthal asymmetries in pp and p-Pb

2) Thermalisation time: $\tau > ---$

Fits to data: thermalisation times $\tau \approx 0.1$ -1 fm/c

Naive expectation: need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

1) System size: $R > \lambda$

Density tomography

2) Thermalisation time: $\tau > -$

Fits to data: thermalisation times $\tau \approx 0.1$ -1 fm/c

Would not expect azimuthal asymmetries in pp and p-Pb

Turns out to be too strict: asymmetries also generated in kinetic with $R < \lambda$ Heiselberg and Levy, nucl-th/9812034, W Lin et al,

v

pQCD calculation: $\tau \gtrsim 6.9 \text{ fm/c}$

Baier et al, PLB 502, 51, PLB 539, 46

Naive expectation: need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

1) System size: $R > \lambda$

Heiselberg and Levy, nucl-th/9812034, W Lin et al, $\boldsymbol{\nu}$ pQCD calculation: $\tau \gtrsim 6.9 \text{ fm/c}$ Baier et al, PLB 502, 51, PLB 539, 46

Turns out to be too strict: asymmetries also generated in kinetic with $R < \lambda$ Density tomography 2) Thermalisation time: $\tau > -$ Fits to data: thermalisation times $\tau \approx 0.1$ -1 fm/c

Turns out to be too strict: (viscous) hydro describes non-thermal systems, see next slide

Naive expectations can be 'bypassed' in nature?

Would not expect azimuthal asymmetries in pp and p-Pb

Naive expectation: need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

Turns out to be too strict: (viscous) hydro describes non-thermal systems, see next slide

Naive expectations can be 'bypassed' in nature?

Hydrodynamic behaviour in non-thermalised system

Emerging understanding: Hydrodynamical description valid before thermalisation/isotropisation

Estimate of smallest (possible) system size with fluid behaviour: $r \approx 0.15$ fm

Weller, Romatschke, EPJC 77, 21

