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Particles and interactions

2

Atomic scale: electromagnetic interactions

Electrons, protons carry 1 unit of electric charge

Standard Model: quantum field theory of fundamental particles

Leptons (e, μ, 𝒯) and photon are the fundamental particles  
of the electromagnetic interactions
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Particles and interactions

2

Atomic scale: electromagnetic interactions

Electrons, protons carry 1 unit of electric charge

Dominant interaction on the subatomic scale (> MeV, < 1 fm)

Quarks and gluons at the fundamental particles of the strong interaction

Standard Model: quantum field theory of fundamental particles

Leptons (e, μ, 𝒯) and photon are the fundamental particles  
of the electromagnetic interactions
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Experimental signatures of quarks and gluons: three-jet events
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jet

jet

jete+

e�

TASSO experiment @ PETRA @ DESY ALEPH @ LEP (CERN)

collision energy:  √s = 13-31 GeV collision energy:  √s = 90-209 GeV

NB: quarks and gluons are not detected individually — parton shower and hadronisation
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The running coupling of QCD

4

High energy, short distances:

quarks and gluons interact as 

quasi-free particles

gqqee →−+

Low-energy, large distances:

quarks are bound into hadrons

QCD potential 
(lattice QCD)

B
ali, hep-lat/9311009

At large distance, small energy: perturbative calculations do not converge

Static QCD potential does not capture full dynamics

QCD coupling constant
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Understanding the interactions
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Three regimes giving rise to subfields of physics:

Electromagnetism Strong 
interaction

Free particles Two-body scattering

Bound states Atomic physics Hadronic, nuclear physics

Many-body physics
Condensed matter:


thermal, electrical properties,  
superconductivity, etc 

Heavy-ion physics:

quark-gluon plasma

Heavy-ion collisions are used to study ‘condensed matter physics’ of QCD

Unique form of ‘quantum condensed matter’
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Condensed matter of QCD: the quark-gluon plasma
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Bernard et al. hep-lat/0610017Tc ~ 155 MeV

Lattice QCD calculations: energy density vs temperature

εc ~ 1 GeV/fm3Low temperature:

quarks and gluons confined in hadrons
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Condensed matter of QCD: the quark-gluon plasma
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Bernard et al. hep-lat/0610017Tc ~ 155 MeV

Lattice QCD calculations: energy density vs temperature

Phase transition at critical temperature Tc ≈ 155 MeV ≈ 1012 K

εc ~ 1 GeV/fm3Low temperature:

quarks and gluons confined in hadrons

High temperature:

deconfined quark-gluon plasma
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Condensed matter of QCD: the quark-gluon plasma

6

Bernard et al. hep-lat/0610017Tc ~ 155 MeV

Lattice QCD calculations: energy density vs temperature

Phase transition at critical temperature Tc ≈ 155 MeV ≈ 1012 K
Increase of number of degrees of freedom: hadrons (3 pions) → quarks+gluons (37)

εc ~ 1 GeV/fm3

4gT∝ε
g: degrees of freedom

Low temperature:

quarks and gluons confined in hadrons

High temperature:

deconfined quark-gluon plasma
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The Large Hadron Collider and ALICE

7

The Large Hadron Collider A Large Ion Collider Experiment

LHC: most powerful particle accelerator-collider in the world

pp collision: 13.6 TeV


Pb-Pb collisions: 5.36 TeV per nucleon pair

ALICE: one of the four large LHC experiments

Focus on strong interaction, heavy-ion collisions
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Thousands of particles are produced in each lead ion collision 

— study momentum distributions, correlations, types of particles
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 Heavy ion collisions: Little Bangs
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MADAI

Stages of the collision: initial stages — QGP/fluid stage — hadron formation (freeze out)

‘Little Bang’: recreate primordial matter in the laboratory

https://madai-public.cs.unc.edu/visualization/heavy-ion-collisions/
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Stages of the collision: initial stages — QGP/fluid stage — hadron formation (freeze out)
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Azimuthal anisotropy: initial and final states
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Characterise shape by harmonics:
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Azimuthal anisotropy: initial and final states
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Characterise shape by harmonics:
Initial state spatial anisotropies εn are transferred into  

final state momentum anisotropies vn  
by pressure gradients, flow of the Quark Gluon Plasma
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Azimuthal anisotropy: initial and final states
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Characterise shape by harmonics:

 (rad)ϕ
0 1 2 3 4 5 6

)
c

) 
(G

e
V

/
ϕ(

ch
ρ

0

50

100

150

200
 = 2.76 TeVNNsPb-Pb 

Single event

| < 0.9 
track

η, |c < 5 GeV/
T, track

p0.15 < 

]))
EP, 2

Ψ-ϕcos(2[
2

(1+2v
0

ρ

]))
EP, 3

Ψ-ϕcos(3[
3

(1+2v
0

ρ

)ϕ(
ch

ρ

0
ρ

ALICE

Azimuthal distribution single event 

A
LIC

E
, P

LB
 753, 511

Initial state spatial anisotropies εn are transferred into  
final state momentum anisotropies vn  

by pressure gradients, flow of the Quark Gluon Plasma

10− 5− 0 5 10

10−

5−

0

5

10

10− 5− 0 5 10

10−

5−

0

5

10

10− 5− 0 5 10

10−

5−

0

5

10

10− 5− 0 5 10

10−

5−

0

5

10

Simulated event: location of nucleons



A Large Ion Collider Experiment

Azimuthal anisotropy: initial and final states
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Characterise shape by harmonics:
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Anisotropic flow: initial state and QGP expansion

11Understanding the QGP with ALICE | Marco van Leeuwen | Wigner 121 Symposium

Mass-dependence of v2 measures flow velocity

JHEP09 (2018) 006

Elliptic flow v2

http://alice-publications.web.cern.ch/node/4287
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Mass-dependence of v2 measures flow velocity

JHEP09 (2018) 006

Elliptic flow v2 v2 of open charm

Even heavy flavour hadrons flow !

ALICE, JHEP 01 (2022) 174

http://alice-publications.web.cern.ch/node/4287
https://link.springer.com/article/10.1007/JHEP01(2022)174
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Mass-dependence of v2 measures flow velocity

JHEP09 (2018) 006

Elliptic flow v2
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v2 of open charm

Even heavy flavour hadrons flow !

ALICE, JHEP 01 (2022) 174

http://alice-publications.web.cern.ch/node/4287
https://link.springer.com/article/10.1007/JHEP01(2022)174
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η/s = 0
No viscosity

Schenke and Jeon, 
Phys.Rev.Lett.106:042301

Azimuthal anisotropy: initial and final states
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η/s = 0
No viscosity

η/s = 0.16
Low viscosity

Schenke and Jeon, 
Phys.Rev.Lett.106:042301

Azimuthal anisotropy: initial and final states
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Constraining initial state and plasma properties simultaneously: Bayesian inference
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J. E. Bernhard et al, arXiv: 1605.03954
Experimental input: yields, mean pT and harmonic flow vs pT

Model: initial anisotropies + medium response

Explores a large parameter space to investigate reliability/robustness of the modeling
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Bayesian analysis of flow: results

14

J. E. Bernhard et al, arXiv: 1605.03954

Initial state geometry
Viscosity vs T

Shear viscosity

Bulk viscosity

Flow data provide information on initial geometry  
and viscosity of the QGP at the same time
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A global fit to anisotropic flow: main result
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J. E. Bernhard et al, Nature 
Physics 15, 1113–1117,  

arXiv: 1605.03954

Viscosity close to fundamental lower bound

Comparison to well-known liquids

QGP has a very small ‘specific viscosity’

small mean free path

λη pn31=

https://www.nature.com/nphys
https://www.nature.com/nphys
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 Initial state geometry: event plane correlations

16

ALI-DER-542007
ALI-DER-542003

- New method: reduced sensitivity to numerical 
fluctuations


- No significant correlation between  and 
Ψ2 Ψ3

Elliptic deformation

Triangular deformation

Comparison to previous results Comparison to theory

arXiv:2302.01234

Correlations between symmetry plane orientations

- New results more in line with  
expectations

ALICE,  arXiv:2302.01234

http://arxiv.org/abs/2302.01234
http://arxiv.org/abs/2302.01234
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Chemical freeze-out

• Hadron yields follow thermal 
distribution with T = Tc = 155 MeV  
 

• Chemical freeze-out at phase 
transition temperature: 
no inelastic collisions after phase 
transition

17

A journey through Q
CD, ALICE, arXiv:2211.04384

N = (2J + 1) e−m/T

Hadron yields compared to thermal model calculation

Chemical freeze-out determines hadron yields 
— end of inelastic collisions
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Elastic collisions in the hadronic phase: resonance yields

18

Re-scattering of decay daughters: signal loss 
Regeneration: resonances formed in hadron 
scattering

Chemical

freeze-out

Kinetic

freeze-out

K*
K*

K* K*K

K K

K
K

π

π π

π

π π

π

π

π

Resonance

decay

Regeneration Re-scattering

ρ

𝜌, K*, Λ* reduced yield: final state scattering of decay particles

φ: longer life time, yield not affected

Resonance yields vs system size

A journey through Q
CD, ALICE, arXiv:2211.04384

Longer life tim
e
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Light nuclei: a sensitive probe of the hadronic phase 

Hadronic collisions at LHC produce light nuclei 
d, t, 3He, 4He etc


• Small binding energy O(MeV) << T of hadronic phase


• Expect large break-up probability


Formation by coalescence of protons and neutrons?


• Expect yield 


• Model calculations use Wigner function formalism

∝ ρp ρn

19

B2 = EA
d3N
dp3

A
(pA)/Ep

d3N
dp3

p
(pp) En

d3N
dp3

n
(pn)

pn = pp pA = 2 pp

deuteron coalescence parameter in pp

ALICE, arXiv:1709.08522
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The Wigner function (quantum density matrix formalism)

• Explored for nuclei by e.g. R Scheibl, U Heinz


• Extended to parton coalescence by J Zimányi, P Lévai, T Csörgö, T S Biró, V Greco, C M Ko,  
R Fries, R Hwa, and others

20

Coalescence models for nuclear collisions/QGP combine proximity conditions in coordinate and momentum space
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Production of light nuclei: thermal model vs coalescence

Thermal and coalescence calculations give similar result for compact states;  
clear differences for larger states

21
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deuteron/proton ratio 3He/proton ratio

 arXiv:2212.04777

http://arxiv.org/abs/2212.04777
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J/ : melting and regeneration at the parton levelψ

22

0 5 10 15 20
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R ALICE

 = 5.02 TeVNNsPb, −Pb
ψInclusive J/
| < 0.9y10%, |−0
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ALI-PUB-539089

J/ : bound state 

charm and anti-charm quark

ψ
Nuclear modification factor

RAA =
dN/dpT |AA

⟨Ncoll⟩ dN/dpT |pp

Binding force screened when

r > λd
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J/ : melting and regeneration at the parton levelψ
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High pT - low density:  
quarkonia dissociate in the QGP

J/ : bound state 

charm and anti-charm quark

ψ
Nuclear modification factor

RAA =
dN/dpT |AA

⟨Ncoll⟩ dN/dpT |pp

Binding force screened when

r > λd
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J/ : melting and regeneration at the parton levelψ
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High pT - low density:  
quarkonia dissociate in the QGPLow pT:


large density of charm quarks (at LHC)

regeneration: coalescence of quarks

J/ : bound state 

charm and anti-charm quark

ψ
Nuclear modification factor

RAA =
dN/dpT |AA

⟨Ncoll⟩ dN/dpT |pp

Binding force screened when

r > λd
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J/  production in Pb-Pb collisions: melting and recombinationψ

• Balance between melting and recombination at low pT


• Rapidity dependence exposes density dependence

23

arXiv:2303.13361 
Mid-rapidity Forward rapidity

RAA =
dN/dpT |AA

⟨Ncoll⟩ dN/dpT |pp

ALI-PUB-539097

ALI-PUB-539105

http://arxiv.org/abs/2303.13361
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Back to the earliest stages: direct photon production

Main sources:


• High pT: hard scattering; quark-gluon Compton 
process


• Low pT: thermal radiation

24

ALICE, PLB 754, 235

Large background: decay photons from 𝜋0, η, …

⇒ Challenging measurement

Excess at low pT: thermal photons
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W. Vogelsang et al.

J. Phys. G 23 A1

C. Gale et al.
Phys. Rev. C 105 (2022) 014909
P. Dasgupta et al.
Phys. Rev. C 98 (2018) 024911
O. Linnyk et al.
Phys. Rev. C 92 (2015) 054914
H. van Hees et al.
Nucl. Phys. A 933 (2015) 256

ALICE Preliminary

ALI-PREL-538511

http://www.sciencedirect.com/science/article/pii/S0370269316000320
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 = 62.4 GeV (PRC 107, 024914)NNsAu, −PHENIX, Au

 = 39 GeV (PRC 107, 024914)  NNsAu, −PHENIX, Au

ALI-PREL-539384

Direct photon excess: thermal production
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Direct photon excess spectrum Spectral slope: apparent temperature

Absolute temperature depends on blue shift
Thermal emission visible for mid-central and central events Apparent temperature larger at LHC than RHIC
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The ALICE detector
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Muon arm: 2.5 < η < 4.0

A general purpose detector for heavy-ion physics

• Low material budget 

• High-resolution tracking 


• Silicon tracker

• Time projection chamber


• Particle identification

• TPC dE/dx

• Time of Flight

• Ring-imaging Cherenkov (high pT)

• Muon ID (forward)

• Transition radiation detector


• EM calorimeters
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ALICE upgrades in Long Shutdown 2 (2019-2021)
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Run 3, 4: collect 13 nb-1 Pb-Pb: 50x more minimum bias data; 10x more triggered data

New ITS and MFT

Full pixel detector

Improved spatial resolution

TPC: GEM readout

Continuous readout

Fast Interaction Trigger Online event processing

ALICE LS2 upgrade paper: arXiv:2302.01238

http://arxiv.org/abs/2302.01238
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Future upgrades: ITS 3 and FoCal

28

Figure 7: Layout of the ITS3 Inner Barrel. The figure shows the two half-barrels mounted
around the beam pipe.

Figure 8: Layout of the ITS3 Inner Barrel. Two end-wheels and the CYSS provide precise
position of the detector relative to the beampipe. On the C-side, the cables first exit from the
C-side End-Wheel, then they are folded to the outside of the CYSS and routed towards the
A-side.

the baseplate, brings it in position on the carbon foam spacers inside the CYSS. A thin layer
of glue, at the interface, provides the mechanical fixation of the half-layer. The two spacers,
positioned at the two edges of the half layer, provide the fixation interface for the 5mm wide
area at the chip edge, where the mechanical and the electrical connection to the FPC are made .
A second set of spacers is then glued to the internal surface of the half-layer 2. The same proce-
dure is then repeated for half-layers 1 and 0, respectively, using their corresponding cylindrical
vacuum chucks and carbon foam spacers with the appropriate curvature radii.

The main layout and geometrical parameters of the ITS3 Inner Barrel are summarized in Tab. 1

10

ITS 3: ultra-light, fully cylindrical tracking layers

Longitudinal profile (2γ showers)

LoI: CERN-LHCC-2020-009

High-granularity Si-W EM calorimeter for 
photons and π0


- Small-x physics in pp and p-Pb

- Forward 𝜋0 in Pb-Pb


3.4 < η < 5.8

FoCal-E

FoCal-H

Improved performance for 

- Heavy flavour reconstruction

- Di-lepton measurements

LoI: CERN-LHCC-2019-018

FoCal: high-granularity forward calorimeter

DPTS test paper arXiv:2212.08621

DPTS test sensor

https://inspirehep.net/literature/1805025
https://cds.cern.ch/record/2703140?ln=en
https://arxiv.org/abs/2212.08621
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LHC Run 5 and 6: ALICE 3

• Compact all-silicon tracker  
with high-resolution vertex detector


• Particle Identification over large acceptance: 
muons, electrons, hadrons, photons


• Fast read-out and online processing

29

Improvement of 

detector performance 

for the upgrades
Letter of Intent: LHCC-2022-009

Retractable vertex tracker

https://cds.cern.ch/record/2803563
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Di-lepton emission: virtual photons

• Virtual photons: e+e- pairs

• Cleaner signal:


•  removes light flavour  
decay background


• Remaining background: heavy flavour pairs

• Slope of mass spectrum not blue-shifted

• Vector meson spectral functions sensitive  

to chiral symmetry restoration

mee > 1 GeV/c2

30

Very low mass:  
𝜋0 decay background


conductivity

ω/𝜑 region: 
chiral symmetry and  

𝜌-a1 mixing

Large mass:

thermal emission,


 early times

Di-lepton mass distribution
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Dielectrons: chiral symmetry and thermal emission
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Figure 13: Excess e+e� invariant mass spectrum for 0 –10 % most central Pb–Pb collisions atp
sNN = 5.5 TeV, 2.5⇥ 109 events (Lint = 3 nb�1). The left and right panels refer to the LS2

upgrade (ITS2) and the LS3 upgrade (ITS3) respectively. The green boxes show the system-
atic uncertainties from the combinatorial background subtraction, the magenta boxes indicate
systematic uncertainties related to the subtraction of the cocktail and charm contribution.

• The enhanced low-pT tracking capability of the ITS3 substantially improves the recon-
struction efficiency of photon conversions in which one of the particles of the dielectron
pair often has very low momentum. This reduces the combinatorial background.

• The improved pointing resolution of the ITS3 enables efficient tagging of electrons from
semi-leptonic charm decays, which form a substantial physical background to the pair-
yield and dominate the invariant-mass spectrum at Mee > 1.1 GeV/c2. A tight cut on the
quadratic sum of the impact parameters of the two electrons reduces the charm background
by a factor of about two. This reduces the systematic uncertainties on the thermal excess
yield related to the subtraction of the charm contribution.

The dominant sources of systematic uncertainties in the dielectron measurements are the large
combinatorial and physical backgrounds. The combinatorial background is estimated and sta-
tistically subtracted using the distribution of like-sign pairs from the same event. The latter is
corrected for the different detector acceptance for unlike- and like-sign pairs with the correction
factor R calculated with mixed-event yields [19, 20, 21]. The systematic uncertainty on R is
propagated to the inclusive dilepton signal uncertainty as sS/S = sR/R · (B/S). Therefore, the
increase of S/B resulting from the reduced conversion probability and the improved conver-
sion rejection with ITS3 determine a linear decrease of the systematic uncertainty. The relative
uncertainty on the background sR/R was estimated to be 0.02%. An additional systematic un-
certainty of 10% is added in quadrature to take into account the track reconstruction and particle
identification uncertainties.

In the following, the results of the physics performance study for 2.5 billion central (0 –10 %)
Pb–Pb collisions at

p
sNN = 5.5 TeV (Lint = 3 nb�1) collected with the solenoid magnetic

field at the reduced value of 0.2 T are discussed. The excess e+e� invariant-mass spectrum,
after subtraction of the combinatorial and charm background, is shown in Fig. 13 for ITS2 (left
panel) and ITS3 (right panel). The signal dielectron pairs considered here include thermal radi-

18

Run 3 and 4: first measurements  
of thermal dilepton emission at LHC

Dileptons  in run 3 and 4
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Figure 13: Excess e+e� invariant mass spectrum for 0 –10 % most central Pb–Pb collisions atp
sNN = 5.5 TeV, 2.5⇥ 109 events (Lint = 3 nb�1). The left and right panels refer to the LS2

upgrade (ITS2) and the LS3 upgrade (ITS3) respectively. The green boxes show the system-
atic uncertainties from the combinatorial background subtraction, the magenta boxes indicate
systematic uncertainties related to the subtraction of the cocktail and charm contribution.

• The enhanced low-pT tracking capability of the ITS3 substantially improves the recon-
struction efficiency of photon conversions in which one of the particles of the dielectron
pair often has very low momentum. This reduces the combinatorial background.

• The improved pointing resolution of the ITS3 enables efficient tagging of electrons from
semi-leptonic charm decays, which form a substantial physical background to the pair-
yield and dominate the invariant-mass spectrum at Mee > 1.1 GeV/c2. A tight cut on the
quadratic sum of the impact parameters of the two electrons reduces the charm background
by a factor of about two. This reduces the systematic uncertainties on the thermal excess
yield related to the subtraction of the charm contribution.

The dominant sources of systematic uncertainties in the dielectron measurements are the large
combinatorial and physical backgrounds. The combinatorial background is estimated and sta-
tistically subtracted using the distribution of like-sign pairs from the same event. The latter is
corrected for the different detector acceptance for unlike- and like-sign pairs with the correction
factor R calculated with mixed-event yields [19, 20, 21]. The systematic uncertainty on R is
propagated to the inclusive dilepton signal uncertainty as sS/S = sR/R · (B/S). Therefore, the
increase of S/B resulting from the reduced conversion probability and the improved conver-
sion rejection with ITS3 determine a linear decrease of the systematic uncertainty. The relative
uncertainty on the background sR/R was estimated to be 0.02%. An additional systematic un-
certainty of 10% is added in quadrature to take into account the track reconstruction and particle
identification uncertainties.

In the following, the results of the physics performance study for 2.5 billion central (0 –10 %)
Pb–Pb collisions at

p
sNN = 5.5 TeV (Lint = 3 nb�1) collected with the solenoid magnetic

field at the reduced value of 0.2 T are discussed. The excess e+e� invariant-mass spectrum,
after subtraction of the combinatorial and charm background, is shown in Fig. 13 for ITS2 (left
panel) and ITS3 (right panel). The signal dielectron pairs considered here include thermal radi-
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Figure 13: Excess e+e� invariant mass spectrum for 0 –10 % most central Pb–Pb collisions atp
sNN = 5.5 TeV, 2.5⇥ 109 events (Lint = 3 nb�1). The left and right panels refer to the LS2

upgrade (ITS2) and the LS3 upgrade (ITS3) respectively. The green boxes show the system-
atic uncertainties from the combinatorial background subtraction, the magenta boxes indicate
systematic uncertainties related to the subtraction of the cocktail and charm contribution.

• The enhanced low-pT tracking capability of the ITS3 substantially improves the recon-
struction efficiency of photon conversions in which one of the particles of the dielectron
pair often has very low momentum. This reduces the combinatorial background.

• The improved pointing resolution of the ITS3 enables efficient tagging of electrons from
semi-leptonic charm decays, which form a substantial physical background to the pair-
yield and dominate the invariant-mass spectrum at Mee > 1.1 GeV/c2. A tight cut on the
quadratic sum of the impact parameters of the two electrons reduces the charm background
by a factor of about two. This reduces the systematic uncertainties on the thermal excess
yield related to the subtraction of the charm contribution.

The dominant sources of systematic uncertainties in the dielectron measurements are the large
combinatorial and physical backgrounds. The combinatorial background is estimated and sta-
tistically subtracted using the distribution of like-sign pairs from the same event. The latter is
corrected for the different detector acceptance for unlike- and like-sign pairs with the correction
factor R calculated with mixed-event yields [19, 20, 21]. The systematic uncertainty on R is
propagated to the inclusive dilepton signal uncertainty as sS/S = sR/R · (B/S). Therefore, the
increase of S/B resulting from the reduced conversion probability and the improved conver-
sion rejection with ITS3 determine a linear decrease of the systematic uncertainty. The relative
uncertainty on the background sR/R was estimated to be 0.02%. An additional systematic un-
certainty of 10% is added in quadrature to take into account the track reconstruction and particle
identification uncertainties.

In the following, the results of the physics performance study for 2.5 billion central (0 –10 %)
Pb–Pb collisions at

p
sNN = 5.5 TeV (Lint = 3 nb�1) collected with the solenoid magnetic

field at the reduced value of 0.2 T are discussed. The excess e+e� invariant-mass spectrum,
after subtraction of the combinatorial and charm background, is shown in Fig. 13 for ITS2 (left
panel) and ITS3 (right panel). The signal dielectron pairs considered here include thermal radi-
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DD̅ azimuthal correlations

• Angular decorrelation directly probes QGP scattering

• Signal strongest at low pT


• Very challenging measurement:  
need good purity, efficiency and η coverage 
→ heavy-ion measurement only possible with ALICE 3
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 Nahrgang et al, PRC 90, 024907
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DD̅ azimuthal correlations

• Angular decorrelation directly probes QGP scattering

• Signal strongest at low pT


• Very challenging measurement:  
need good purity, efficiency and η coverage 
→ heavy-ion measurement only possible with ALICE 3
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Charm azimuthal correlations M
 Nahrgang et al, PRC 90, 024907

pD0

T > 4 GeV/c
2 < pD0

T < 4 GeV/c

ALICE 3 projection:  correlations DD

ALICE Run 3 + 4 projection

https://arxiv.org/pdf/1305.3823
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Strategic detector R&D for ALICE 3

• Vertex tracker mechanics 

• Silicon tracking sensor development 

• Improve read-out speed, radiation hardness


• Low-power for cooling, large scale application


• Module integration


• Integrated timing sensor development 

• Goal: achieve monolithic timing sensors


• Improve time resolution to 20 ps


• Combine photon sensors and timing sensors?


• Muon detector development 

• Large area, low noise detectors

33

F. Carnesecchi et al, EPJ Plus 138 1, 99

beam  
from front

beam  
from back

SiPM hadron response tests

F Carnesecchi et al, arXiv:2202.04169

LGAD time resolution

R&D for ALICE 3 is starting up

Many exciting opportunities

https://arxiv.org/abs/2208.05717
https://arxiv.org/abs/2202.04160
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Summary

• ALICE studies the condensed matter of the strong interaction at high temperature:  
the Quark Gluon Plasma


• Key properties of the plasma are being determined from data:

• Shear viscosity: close to lower bound 

• First constraints on bulk viscosity


• Charm quarks move with the fluid expansion: rapid thermalisation

• Beauty less so? ⟹ Run 3 and 4 to improve precision


• Indicate short mean free path strong (residual) interactions 
• Future directions


• Measurement of initial temperature in reach for upcoming runs

• Future upgrades to understand interactions, thermalisation

34
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Detector

Probe beam

particles

Not feasible:

Short life time


Small size (~10 fm)
Use self-generated probe:


quarks, gluons from hard scattering 
 large transverse momentum
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Nuclear modification and elliptic flow of D mesons
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Nuclear modification factor Elliptic flow v2

ALICE, JHEP 01 (2022) 174

ALICE, JHEP 01 (2022) 174
D mesons contain a charm quark m >> T, that is produced in an initial hard scattering

https://link.springer.com/article/10.1007/JHEP01(2022)174
https://link.springer.com/article/10.1007/JHEP01(2022)174
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Nuclear modification factor Elliptic flow v2

High-pT suppression:

due to energy loss

ALICE, JHEP 01 (2022) 174

ALICE, JHEP 01 (2022) 174
D mesons contain a charm quark m >> T, that is produced in an initial hard scattering

https://link.springer.com/article/10.1007/JHEP01(2022)174
https://link.springer.com/article/10.1007/JHEP01(2022)174
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Nuclear modification factor Elliptic flow v2

Low pT: no change/enhancement: 
charm conservation + diffusion

High-pT suppression:

due to energy loss

ALICE, JHEP 01 (2022) 174

ALICE, JHEP 01 (2022) 174
D mesons contain a charm quark m >> T, that is produced in an initial hard scattering

https://link.springer.com/article/10.1007/JHEP01(2022)174
https://link.springer.com/article/10.1007/JHEP01(2022)174
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Azimuthal anisotropy:

Full effect generated by interactions

Nuclear modification factor Elliptic flow v2

Low pT: no change/enhancement: 
charm conservation + diffusion

High-pT suppression:

due to energy loss

ALICE, JHEP 01 (2022) 174

ALICE, JHEP 01 (2022) 174
D mesons contain a charm quark m >> T, that is produced in an initial hard scattering

https://link.springer.com/article/10.1007/JHEP01(2022)174
https://link.springer.com/article/10.1007/JHEP01(2022)174
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Determining the transport coefficients
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Heavy flavor transport coefficient: Bayesian fit
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Data constrain transport properties of the QGP

Results agree with lattice QCD/pQCD expectations


and between light and heavy flavour sector

⟨r2⟩ = 6 Ds t

Diffusion coefficient Ds Transport coefficient ̂q

̂q =
⟨q2

⊥⟩
λ
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Heavy-ion collisions as a laboratory for nuclear and hadron physics
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ALI-PUB-527068

Life time measurements of hyperons and hypernuclei competitive with world data

 arXiv:2209.07360
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Life time: comparison to existing results 

Λ0 p
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Llab

Example: life time of strange baryons and nuclei

arXiv:2303.00606

Hypernuclei life time

https://arxiv.org/abs/2209.07360
http://arxiv.org/abs/2303.00606
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Thermalisation of heavy quarks
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Thermalisation of heavy quarks
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Multi-charm baryon yields
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Multi-charm baryons: unique probe

- Large expected enhancement

- Theoretically clean: charm quarks conserved
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Messengers of the Plasma: soft and hard processes
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Soft probes: particles produced by the QGP 
Azimuthal anisotropy


Light-flavour particle ratios

Thermal radiation
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Soft probes: particles produced by the QGP 
Azimuthal anisotropy


Light-flavour particle ratios

Thermal radiation

Heavy quarks charm and beauty:

• m >> T: Only produced in initial hard scattering

• Flavour conserved during evolution

Hard scattering products probe the QGP as they propagate out
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Azimuthal anisotropy: two mechanisms
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Hydrodynamical expansion Parton energy loss
Conversion of pressure gradients into momentum space anisotropy

More energy loss along  
long axis than short axis

2ˆ~ LqE Smed αΔ

Expansion

Hadronisation
Energy loss

Dominant effect for late formation times:
light flavour at low pT

Dominant effect at high pT

Dominant effect for early formation times:
heavy flavour, high pT probes

Anisotropy due to energy loss and path length differences

Lo
ng

 a
xi

s
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Jets and parton showers

45

jet 1

jet 2
e+

e-
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Jets and parton showers

45

jet 1

jet 2
e+

e-

Parton shower:

Gluon radiation and gluon splitting


occur spontaneously in vacuum
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Jets and parton showers

45

jet 1

jet 2

hadronisation:

quarks, anti-quarks and gluons  

form hadrons

e+

e-

Parton shower:

Gluon radiation and gluon splitting


occur spontaneously in vacuum



A Large Ion Collider Experiment

Yields, mean pT
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Particle/pion ratios Mean pT

Yields ‘scale’ with multiplicity

Mean pt: disconnect between  
high-mult small systems and PbPb
A multiplicity selection introduces  

more bias in small system

Yield, mean pT are convenient to summarise results, but a lot of physics enters
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Flow of nuclei: coalescence vs thermal production

47

ALICE, arXiv:1910.09718
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Λc production in pp and Pb-Pb

48

Λc/D0 in pp significantly larger 
 than expected from e+e- 

Λc/D in pp
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Λc production in pp and Pb-Pb

48

Λc/D0 in pp significantly larger 
 than expected from e+e- 

Λc/D in pp

New result: Λc in Pb-Pb;  
Λc/D similar or slightly larger than in pp
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Λc production in pp and Pb-Pb

48

Λc/D0 in pp significantly larger 
 than expected from e+e- 

Λc/D in pp

New result: Λc in Pb-Pb;  
Λc/D similar or slightly larger than in pp
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Λc/D in pp, Pb-Pb

Does hadronisation by recombination play a role? Or ‘just’ fragmentation?
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ALI-PUB-533071

Production of light (anti-)nuclei

• New results in pp, p-Pb collisions as a function of multiplicity

• Smooth trend as a function of multiplicity

• Data more in line with coalescence model

49

arxiv: 2211.14015, arxiv: 2212.04777

pp

Pb-Pb

 arXiv:2211.15204

Deuteron production rate in pp, Pb-Pb
Deuteron production in jets


pp collisions

• Increased production in Pb-Pb 
collisions


• Two possible explanations:

• Coalescence: density 

impacts coalescence rate

• Thermal-statistical (CSM): 

baryon number 
conservation suppresses 
multi-baryon states in pp

Deuteron production in jets: 
increase of rate due to higher local density 
in line with coalescence model expectation

http://arxiv.org/abs/2211.15204
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Hadron interactions: 3-particle correlations

• Use correlations of pairs with similar momentum to measure potential


• First direct study of 3-body potential ppK


• No evidence  of true 3-body force; 2-body interactions fully explain correlation signal

50

 arXiv:2303.13448 
ppK- correlations
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http://arxiv.org/abs/2303.13448
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Melting and regeneration of charmonia:  vs J/ψ(2S) ψ

• High pT: stronger suppression of — lower melting temperature


• Low pT: RAA increases — regeneration similar to J/

ψ(2S)
ψ

51

arXiv:2210.08893

Nuclear modification factor vs pT

Different  bound states:

 and J/  


different binding energies, sizes

cc
ψ(2S) ψ

ψ(2S)

J/ψ

RAA =
dN/dpT |AA

⟨Ncoll⟩ dN/dpT |pp

https://arxiv.org/abs/2210.08893
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2017 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 20312018 2034 20352032 2033

LHC  
Run 2

LHC 
LS2

LHC  
Run 3

LHC 
LS3

LHC  
Run 4

LHC 
LS4

LHC  
Run 5

ALICE 3ALICE 2ALICE 1 ALICE 2.1

ALICE upgrade plans for LS3 and LS4

52

FoCal LoI: 
 CERN-LHCC-2020-009

ALICE 3 LoI:  
CERN-LHCC-2022-009 

LS3 upgrades

Forward Calorimeter ITS 3

ALICE 3: LS4

ITS3 LoI: 
 CERN-LHCC-2019-018

https://inspirehep.net/literature/1805025
https://cds.cern.ch/record/2803563
https://cds.cern.ch/record/2703140/
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High-energy physics experiments bring together disciplines:

- detector development

- electronics

- computing

- cooling

- mechanics

- super-conducting magnet technology

Upgraded inner tracking system
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High-energy physics experiments bring together disciplines:

- detector development

- electronics

- computing

- cooling

- mechanics

- super-conducting magnet technology

Upgraded inner tracking system

DPTS test paper arXiv:2212.08621

ALICE has spearheaded the development and  
adoptation of monolithic active pixel sensors

https://arxiv.org/abs/2212.08621
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High-energy physics experiments bring together disciplines:

- detector development

- electronics

- computing

- cooling

- mechanics

- super-conducting magnet technology

Upgraded inner tracking system

DPTS test paper arXiv:2212.08621

ALICE has spearheaded the development and  
adoptation of monolithic active pixel sensors

ITS3 upgrade

Ultralight inner layers: improved pointing resolution

https://arxiv.org/abs/2212.08621
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Multi-charm baryon detection

• \

54

New technique: strangeness tracking  

Ξ++
cc → Ξ+

c + π+ Ξ+
c → Ξ− + 2π+
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Impact parameter of Ξ
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Multi-charm baryon detection

• \

54

New technique: strangeness tracking  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pQCD SPS (Phys. Rev. D 57, 4385)

Large enhancements: unique sensitivity to 
thermalisation and hadronisation dynamicsΞ++

cc → Ξ+
c + π+ Ξ+

c → Ξ− + 2π+

Unique access in Pb-Pb collisions with ALICE 3
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Probing the gluon density in a hadron collider
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Sensitive to gluons at LO

Heavy hadron: 

also directly sensitive 

but fragmentation reduces  
kinematic constraint

Incoming partons:
quark and gluon

Incoming partons:
2 gluons

Direct photon production Charm production

More processes contribute, e.g. gluon splitting
Photon momentum directly  
related to incoming partons
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Forward photons with FoCal 

56

Constrain gluon density in nuclei 
over a broad range:  

x ~10-5 - 10-2 at small Q2
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reject decay background
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Elliptic flow of quarkonia

57
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J/𝜓 melting is not directional; expect no or very little v2 

Recombination sensitive to v2 of QGP

—> Expect non-zero v2 at low pT

Updated model: v2 extends to larger pT

PRL 119, 242301

M
in He and Ralf Rapp, PRL 128 (2022) 16, 162301

J/𝜓 v2: new model calculation

https://inspirehep.net/literature/1976910
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Interactions of beauty quarks with the QGP: v2
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J/𝜓 and ϒ v2

Hidden HF: no beauty v2 ?
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Prompt and non-prompt (from B decay) D0 v2

Open HF: smaller v2 for beauty than charm
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Interactions of beauty quarks with the QGP: v2
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Probing the QGP with jets at LHC
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ALICE

η

ϕ

Very clear signals at high pT: jets stand out above uncorrelated ‘soft’ background
Interactions with QGP: energy loss, high-pT suppression
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Energy loss: di-jet asymmetry
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Energy fraction of second jet

xJ =
pT,1

pT,2

ATLAS, PLB 774, 379

Single event: pT not balanced!
pp: peak at 1 — balanced jets


PbPb: shift towards lower values

Di-jet energy imbalance: jets lose energy as they propagate through the plasma
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Experimental challenge: large combinatorial background in Pb-Pb
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η

ϕ

Standard technique: measure background ET density  
outside jet ‘Area based’

Residual fluctuations due to finite number statistics

Machine-learning technique

Background subtraction refined based on  
e.g. leading particle pT

Reduces fluctuations

Haake and Loizides, PRC99, 064904 

Allows to measure jets with larger R, lower pT

JHEP 03 (2012) 053
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Jet-radius dependence of energy loss in Pb-Pb collisions

• Machine-learning based background subtraction enables jet measurements with R up to 0.6 at pT ~ 50 GeV

• Jet suppression increase with increasing R: wider jets lose more energy

62

Quantify in- and out-of-cone 
radiation by measuring 

jet quenching vs cone radius

Nuclear modification factor R-dependence: ratio R=0.6/R=0.2ALICE, arXiv:2303.00592

ALI-PUB-535257
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Flow-like effects in pp and Pb-Pb: long range correlations

63
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Flow-like effects in pp and Pb-Pb: long range correlations
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Elliptic flow in p-Pb
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Flow effects in small systems

65

Why would the system behave as a fluid?

• Hydrodynamisation (isotropisation) of a dense 
gluon system?

• Partonic/hadronic rescattering?
• How many scatterings/what density is needed to 

approximate fluid behaviour?

• Long range correlation
• 2- and 3-fold symmetries
• Dependence on initial geometry
• Many-particle correlations
• Particle mass dependence

Is there enough time, volume to thermalise?

Many aspects of the observed ridge have  
a natural explanation in hydrodynamics:
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Limits on hydrodynamic behaviour

66

2) Thermalisation time:

1) System size:

Naive expectation: need at least a few collisions for each parton to reach thermal  
equilibrium and apply hydrodynamic

𝜏 ≳ 6.9 fm/c
Baier et al, PLB 502, 51, PLB 539, 46

Fits to data: thermalisation times 𝜏 ≈ 0.1-1 fm/c pQCD calculation:

Would not expect azimuthal asymmetries in pp and p-Pb

Heiselberg and Levy, nucl-th/9812034,  
W Lin et al,
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Limits on hydrodynamic behaviour
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Turns out to be too strict: asymmetries also generated in kinetic with R < 𝜆
Density tomography
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Fits to data: thermalisation times 𝜏 ≈ 0.1-1 fm/c pQCD calculation:

Would not expect azimuthal asymmetries in pp and p-Pb
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Hydrodynamic behaviour in non-thermalised system

67

Emerging understanding: 
          Hydrodynamical description valid before thermalisation/isotropisation

Non-equilibrium 
expansion in AdS/CFT

kinetic theory

Keegan et al, JHEP 04, 031
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